| L(s)  = 1  |     + 3-s         − 7·7-s     − 26·9-s     − 37·11-s     − 38·13-s         + 35·17-s     + 73·19-s     − 7·21-s     + 64·23-s         − 53·27-s     + 226·29-s     + 108·31-s     − 37·33-s         + 360·37-s     − 38·39-s     + 279·41-s     + 32·43-s         − 222·47-s     + 49·49-s     + 35·51-s     − 508·53-s         + 73·57-s     + 420·59-s     − 610·61-s     + 182·63-s         + 825·67-s     + 64·69-s  + ⋯ | 
 
| L(s)  = 1  |     + 0.192·3-s         − 0.377·7-s     − 0.962·9-s     − 1.01·11-s     − 0.810·13-s         + 0.499·17-s     + 0.881·19-s     − 0.0727·21-s     + 0.580·23-s         − 0.377·27-s     + 1.44·29-s     + 0.625·31-s     − 0.195·33-s         + 1.59·37-s     − 0.156·39-s     + 1.06·41-s     + 0.113·43-s         − 0.688·47-s     + 1/7·49-s     + 0.0960·51-s     − 1.31·53-s         + 0.169·57-s     + 0.926·59-s     − 1.28·61-s     + 0.363·63-s         + 1.50·67-s     + 0.111·69-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(2)\)  | 
            \(\approx\) | 
             \(1.566357504\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(1.566357504\)  | 
    
    
        
      |  \(L(\frac{5}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | 
|---|
| bad | 2 |  \( 1 \)  | 
 | 5 |  \( 1 \)  | 
 | 7 |  \( 1 + p T \)  | 
| good | 3 |  \( 1 - T + p^{3} T^{2} \)  | 
 | 11 |  \( 1 + 37 T + p^{3} T^{2} \)  | 
 | 13 |  \( 1 + 38 T + p^{3} T^{2} \)  | 
 | 17 |  \( 1 - 35 T + p^{3} T^{2} \)  | 
 | 19 |  \( 1 - 73 T + p^{3} T^{2} \)  | 
 | 23 |  \( 1 - 64 T + p^{3} T^{2} \)  | 
 | 29 |  \( 1 - 226 T + p^{3} T^{2} \)  | 
 | 31 |  \( 1 - 108 T + p^{3} T^{2} \)  | 
 | 37 |  \( 1 - 360 T + p^{3} T^{2} \)  | 
 | 41 |  \( 1 - 279 T + p^{3} T^{2} \)  | 
 | 43 |  \( 1 - 32 T + p^{3} T^{2} \)  | 
 | 47 |  \( 1 + 222 T + p^{3} T^{2} \)  | 
 | 53 |  \( 1 + 508 T + p^{3} T^{2} \)  | 
 | 59 |  \( 1 - 420 T + p^{3} T^{2} \)  | 
 | 61 |  \( 1 + 10 p T + p^{3} T^{2} \)  | 
 | 67 |  \( 1 - 825 T + p^{3} T^{2} \)  | 
 | 71 |  \( 1 - 190 T + p^{3} T^{2} \)  | 
 | 73 |  \( 1 + 275 T + p^{3} T^{2} \)  | 
 | 79 |  \( 1 - 742 T + p^{3} T^{2} \)  | 
 | 83 |  \( 1 + 1041 T + p^{3} T^{2} \)  | 
 | 89 |  \( 1 - 1417 T + p^{3} T^{2} \)  | 
 | 97 |  \( 1 + 106 T + p^{3} T^{2} \)  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−9.939390527362541444466363684451, −9.313806130303167106533252008479, −8.178086266475326942200228300178, −7.64136254148973610234278098907, −6.47020017262781506293635746092, −5.50843748637387560381254001801, −4.67877791751617010124032870426, −3.13559290612135832032999145355, −2.56295761583484233326493739199, −0.69279429554580685238235395427, 
0.69279429554580685238235395427, 2.56295761583484233326493739199, 3.13559290612135832032999145355, 4.67877791751617010124032870426, 5.50843748637387560381254001801, 6.47020017262781506293635746092, 7.64136254148973610234278098907, 8.178086266475326942200228300178, 9.313806130303167106533252008479, 9.939390527362541444466363684451