Properties

Label 2-700-1.1-c3-0-4
Degree $2$
Conductor $700$
Sign $1$
Analytic cond. $41.3013$
Root an. cond. $6.42661$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7·7-s − 26·9-s − 37·11-s − 38·13-s + 35·17-s + 73·19-s − 7·21-s + 64·23-s − 53·27-s + 226·29-s + 108·31-s − 37·33-s + 360·37-s − 38·39-s + 279·41-s + 32·43-s − 222·47-s + 49·49-s + 35·51-s − 508·53-s + 73·57-s + 420·59-s − 610·61-s + 182·63-s + 825·67-s + 64·69-s + ⋯
L(s)  = 1  + 0.192·3-s − 0.377·7-s − 0.962·9-s − 1.01·11-s − 0.810·13-s + 0.499·17-s + 0.881·19-s − 0.0727·21-s + 0.580·23-s − 0.377·27-s + 1.44·29-s + 0.625·31-s − 0.195·33-s + 1.59·37-s − 0.156·39-s + 1.06·41-s + 0.113·43-s − 0.688·47-s + 1/7·49-s + 0.0960·51-s − 1.31·53-s + 0.169·57-s + 0.926·59-s − 1.28·61-s + 0.363·63-s + 1.50·67-s + 0.111·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(700\)    =    \(2^{2} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(41.3013\)
Root analytic conductor: \(6.42661\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 700,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.566357504\)
\(L(\frac12)\) \(\approx\) \(1.566357504\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 + p T \)
good3 \( 1 - T + p^{3} T^{2} \)
11 \( 1 + 37 T + p^{3} T^{2} \)
13 \( 1 + 38 T + p^{3} T^{2} \)
17 \( 1 - 35 T + p^{3} T^{2} \)
19 \( 1 - 73 T + p^{3} T^{2} \)
23 \( 1 - 64 T + p^{3} T^{2} \)
29 \( 1 - 226 T + p^{3} T^{2} \)
31 \( 1 - 108 T + p^{3} T^{2} \)
37 \( 1 - 360 T + p^{3} T^{2} \)
41 \( 1 - 279 T + p^{3} T^{2} \)
43 \( 1 - 32 T + p^{3} T^{2} \)
47 \( 1 + 222 T + p^{3} T^{2} \)
53 \( 1 + 508 T + p^{3} T^{2} \)
59 \( 1 - 420 T + p^{3} T^{2} \)
61 \( 1 + 10 p T + p^{3} T^{2} \)
67 \( 1 - 825 T + p^{3} T^{2} \)
71 \( 1 - 190 T + p^{3} T^{2} \)
73 \( 1 + 275 T + p^{3} T^{2} \)
79 \( 1 - 742 T + p^{3} T^{2} \)
83 \( 1 + 1041 T + p^{3} T^{2} \)
89 \( 1 - 1417 T + p^{3} T^{2} \)
97 \( 1 + 106 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.939390527362541444466363684451, −9.313806130303167106533252008479, −8.178086266475326942200228300178, −7.64136254148973610234278098907, −6.47020017262781506293635746092, −5.50843748637387560381254001801, −4.67877791751617010124032870426, −3.13559290612135832032999145355, −2.56295761583484233326493739199, −0.69279429554580685238235395427, 0.69279429554580685238235395427, 2.56295761583484233326493739199, 3.13559290612135832032999145355, 4.67877791751617010124032870426, 5.50843748637387560381254001801, 6.47020017262781506293635746092, 7.64136254148973610234278098907, 8.178086266475326942200228300178, 9.313806130303167106533252008479, 9.939390527362541444466363684451

Graph of the $Z$-function along the critical line