Properties

Label 2-700-1.1-c3-0-10
Degree $2$
Conductor $700$
Sign $1$
Analytic cond. $41.3013$
Root an. cond. $6.42661$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7·3-s − 7·7-s + 22·9-s − 7·11-s + 3·13-s + 61·17-s + 48·19-s − 49·21-s + 58·23-s − 35·27-s + 219·29-s + 298·31-s − 49·33-s − 170·37-s + 21·39-s + 50·41-s + 484·43-s + 131·47-s + 49·49-s + 427·51-s + 210·53-s + 336·57-s − 782·59-s + 488·61-s − 154·63-s + 494·67-s + 406·69-s + ⋯
L(s)  = 1  + 1.34·3-s − 0.377·7-s + 0.814·9-s − 0.191·11-s + 0.0640·13-s + 0.870·17-s + 0.579·19-s − 0.509·21-s + 0.525·23-s − 0.249·27-s + 1.40·29-s + 1.72·31-s − 0.258·33-s − 0.755·37-s + 0.0862·39-s + 0.190·41-s + 1.71·43-s + 0.406·47-s + 1/7·49-s + 1.17·51-s + 0.544·53-s + 0.780·57-s − 1.72·59-s + 1.02·61-s − 0.307·63-s + 0.900·67-s + 0.708·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(700\)    =    \(2^{2} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(41.3013\)
Root analytic conductor: \(6.42661\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 700,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.347455953\)
\(L(\frac12)\) \(\approx\) \(3.347455953\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 + p T \)
good3 \( 1 - 7 T + p^{3} T^{2} \)
11 \( 1 + 7 T + p^{3} T^{2} \)
13 \( 1 - 3 T + p^{3} T^{2} \)
17 \( 1 - 61 T + p^{3} T^{2} \)
19 \( 1 - 48 T + p^{3} T^{2} \)
23 \( 1 - 58 T + p^{3} T^{2} \)
29 \( 1 - 219 T + p^{3} T^{2} \)
31 \( 1 - 298 T + p^{3} T^{2} \)
37 \( 1 + 170 T + p^{3} T^{2} \)
41 \( 1 - 50 T + p^{3} T^{2} \)
43 \( 1 - 484 T + p^{3} T^{2} \)
47 \( 1 - 131 T + p^{3} T^{2} \)
53 \( 1 - 210 T + p^{3} T^{2} \)
59 \( 1 + 782 T + p^{3} T^{2} \)
61 \( 1 - 8 p T + p^{3} T^{2} \)
67 \( 1 - 494 T + p^{3} T^{2} \)
71 \( 1 + 240 T + p^{3} T^{2} \)
73 \( 1 - 58 T + p^{3} T^{2} \)
79 \( 1 + 1065 T + p^{3} T^{2} \)
83 \( 1 - 1036 T + p^{3} T^{2} \)
89 \( 1 - 608 T + p^{3} T^{2} \)
97 \( 1 + 1339 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.865113457964303170453193999923, −9.152370805964178258474862493077, −8.325996116236518303945787234467, −7.67183427871722569105887560384, −6.69867259189124770020212974285, −5.53468466864200972996864492897, −4.29774960242756491319204990451, −3.19549368866538100015163340093, −2.57242081031577782729882998591, −1.03951510157037679992252829965, 1.03951510157037679992252829965, 2.57242081031577782729882998591, 3.19549368866538100015163340093, 4.29774960242756491319204990451, 5.53468466864200972996864492897, 6.69867259189124770020212974285, 7.67183427871722569105887560384, 8.325996116236518303945787234467, 9.152370805964178258474862493077, 9.865113457964303170453193999923

Graph of the $Z$-function along the critical line