L(s) = 1 | + 1.41i·2-s − 2.07·3-s − 2.00·4-s + (−4.65 + 1.82i)5-s − 2.93i·6-s + (−3.36 + 6.13i)7-s − 2.82i·8-s − 4.67·9-s + (−2.57 − 6.58i)10-s + 1.67·11-s + 4.15·12-s + 9.81·13-s + (−8.67 − 4.76i)14-s + (9.67 − 3.78i)15-s + 4.00·16-s − 0.498·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.692·3-s − 0.500·4-s + (−0.931 + 0.364i)5-s − 0.489i·6-s + (−0.481 + 0.876i)7-s − 0.353i·8-s − 0.519·9-s + (−0.257 − 0.658i)10-s + 0.152·11-s + 0.346·12-s + 0.754·13-s + (−0.619 − 0.340i)14-s + (0.645 − 0.252i)15-s + 0.250·16-s − 0.0293·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 - 0.128i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.991 - 0.128i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.0305055 + 0.473101i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0305055 + 0.473101i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 1.41iT \) |
| 5 | \( 1 + (4.65 - 1.82i)T \) |
| 7 | \( 1 + (3.36 - 6.13i)T \) |
good | 3 | \( 1 + 2.07T + 9T^{2} \) |
| 11 | \( 1 - 1.67T + 121T^{2} \) |
| 13 | \( 1 - 9.81T + 169T^{2} \) |
| 17 | \( 1 + 0.498T + 289T^{2} \) |
| 19 | \( 1 - 32.2iT - 361T^{2} \) |
| 23 | \( 1 - 3.78iT - 529T^{2} \) |
| 29 | \( 1 + 39.0T + 841T^{2} \) |
| 31 | \( 1 - 24.9iT - 961T^{2} \) |
| 37 | \( 1 + 16.0iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 71.1iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 37.7iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 71.4T + 2.20e3T^{2} \) |
| 53 | \( 1 - 83.0iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 36.4iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 50.4iT - 3.72e3T^{2} \) |
| 67 | \( 1 + 12.2iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 44.6T + 5.04e3T^{2} \) |
| 73 | \( 1 - 102.T + 5.32e3T^{2} \) |
| 79 | \( 1 - 132.T + 6.24e3T^{2} \) |
| 83 | \( 1 - 8.72T + 6.88e3T^{2} \) |
| 89 | \( 1 + 54.0iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 41.7T + 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.13752877225914962112423531043, −14.19409724675582673029123190405, −12.60456124721659398979349043320, −11.78539871021973188299540466546, −10.65312736582807686046071578970, −9.023991489458987259750513389613, −7.924267463983326851262190665187, −6.44978936511238978820776075387, −5.51283121854205700867132086809, −3.61085001953339776493148495549,
0.45643559504228585344925247795, 3.50464024790795373558436113398, 4.88316582874211583142573595462, 6.65060725857433392915686960025, 8.203446663688495962037600516020, 9.510392731106526611662341385302, 11.13628148697086398662170611424, 11.32371285491388538492622364235, 12.74037278883248564922673742434, 13.56125864356641321540584165019