L(s) = 1 | + (0.366 − 1.36i)2-s + (1.35 + 5.05i)3-s + (−1.73 − i)4-s + (−3.48 + 3.58i)5-s + 7.39·6-s + (6.88 + 1.26i)7-s + (−2 + 1.99i)8-s + (−15.8 + 9.16i)9-s + (3.61 + 6.07i)10-s + (5.56 − 9.64i)11-s + (2.70 − 10.1i)12-s + (9.62 − 9.62i)13-s + (4.25 − 8.94i)14-s + (−22.8 − 12.7i)15-s + (1.99 + 3.46i)16-s + (8.55 − 2.29i)17-s + ⋯ |
L(s) = 1 | + (0.183 − 0.683i)2-s + (0.451 + 1.68i)3-s + (−0.433 − 0.250i)4-s + (−0.697 + 0.716i)5-s + 1.23·6-s + (0.983 + 0.181i)7-s + (−0.250 + 0.249i)8-s + (−1.76 + 1.01i)9-s + (0.361 + 0.607i)10-s + (0.506 − 0.876i)11-s + (0.225 − 0.841i)12-s + (0.740 − 0.740i)13-s + (0.303 − 0.638i)14-s + (−1.52 − 0.851i)15-s + (0.124 + 0.216i)16-s + (0.503 − 0.134i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.663 - 0.747i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.663 - 0.747i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.28812 + 0.579122i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.28812 + 0.579122i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.366 + 1.36i)T \) |
| 5 | \( 1 + (3.48 - 3.58i)T \) |
| 7 | \( 1 + (-6.88 - 1.26i)T \) |
good | 3 | \( 1 + (-1.35 - 5.05i)T + (-7.79 + 4.5i)T^{2} \) |
| 11 | \( 1 + (-5.56 + 9.64i)T + (-60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (-9.62 + 9.62i)T - 169iT^{2} \) |
| 17 | \( 1 + (-8.55 + 2.29i)T + (250. - 144.5i)T^{2} \) |
| 19 | \( 1 + (-5.79 + 3.34i)T + (180.5 - 312. i)T^{2} \) |
| 23 | \( 1 + (27.5 + 7.37i)T + (458. + 264.5i)T^{2} \) |
| 29 | \( 1 - 29.0iT - 841T^{2} \) |
| 31 | \( 1 + (11.9 - 20.6i)T + (-480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + (-4.01 + 14.9i)T + (-1.18e3 - 684.5i)T^{2} \) |
| 41 | \( 1 + 9.18T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-55.1 + 55.1i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (2.29 - 8.55i)T + (-1.91e3 - 1.10e3i)T^{2} \) |
| 53 | \( 1 + (3.69 + 13.8i)T + (-2.43e3 + 1.40e3i)T^{2} \) |
| 59 | \( 1 + (67.7 + 39.1i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (10.7 + 18.5i)T + (-1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (51.3 - 13.7i)T + (3.88e3 - 2.24e3i)T^{2} \) |
| 71 | \( 1 + 101.T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-27.1 - 101. i)T + (-4.61e3 + 2.66e3i)T^{2} \) |
| 79 | \( 1 + (-11.7 + 6.81i)T + (3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-28.4 + 28.4i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + (-6.56 + 3.78i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 + (-74.4 - 74.4i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.48765420133033819549184467200, −14.05312191967097589239989393699, −11.96632607126560375503502769885, −10.93896173715451247037606807436, −10.50239853485068404773894282114, −9.018251514438437357190163671762, −8.094414132184972169802277492588, −5.53130674869938544638240815183, −4.09605239174944556951494984643, −3.15547939031342570732233677414,
1.49532513100505645029990022309, 4.22667808319286959996443441848, 6.08213373174498542732030416834, 7.51662153027755617319037076597, 7.966759457794217126543386800243, 9.125158257022509741785212289507, 11.64836609380154125804981041807, 12.22355498457420860436560915137, 13.37964842196653393447145232191, 14.16869148160008323518352563370