Properties

Label 2-70-1.1-c5-0-6
Degree $2$
Conductor $70$
Sign $1$
Analytic cond. $11.2268$
Root an. cond. $3.35065$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 30.5·3-s + 16·4-s − 25·5-s + 122.·6-s − 49·7-s + 64·8-s + 688.·9-s − 100·10-s + 392.·11-s + 488.·12-s − 631.·13-s − 196·14-s − 763.·15-s + 256·16-s − 1.37e3·17-s + 2.75e3·18-s + 1.49e3·19-s − 400·20-s − 1.49e3·21-s + 1.56e3·22-s − 4.57e3·23-s + 1.95e3·24-s + 625·25-s − 2.52e3·26-s + 1.35e4·27-s − 784·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.95·3-s + 0.5·4-s − 0.447·5-s + 1.38·6-s − 0.377·7-s + 0.353·8-s + 2.83·9-s − 0.316·10-s + 0.977·11-s + 0.978·12-s − 1.03·13-s − 0.267·14-s − 0.875·15-s + 0.250·16-s − 1.15·17-s + 2.00·18-s + 0.951·19-s − 0.223·20-s − 0.740·21-s + 0.691·22-s − 1.80·23-s + 0.692·24-s + 0.200·25-s − 0.733·26-s + 3.59·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(70\)    =    \(2 \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(11.2268\)
Root analytic conductor: \(3.35065\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 70,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(4.455164068\)
\(L(\frac12)\) \(\approx\) \(4.455164068\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 4T \)
5 \( 1 + 25T \)
7 \( 1 + 49T \)
good3 \( 1 - 30.5T + 243T^{2} \)
11 \( 1 - 392.T + 1.61e5T^{2} \)
13 \( 1 + 631.T + 3.71e5T^{2} \)
17 \( 1 + 1.37e3T + 1.41e6T^{2} \)
19 \( 1 - 1.49e3T + 2.47e6T^{2} \)
23 \( 1 + 4.57e3T + 6.43e6T^{2} \)
29 \( 1 - 2.70e3T + 2.05e7T^{2} \)
31 \( 1 + 6.93e3T + 2.86e7T^{2} \)
37 \( 1 - 1.47e3T + 6.93e7T^{2} \)
41 \( 1 - 1.47e3T + 1.15e8T^{2} \)
43 \( 1 + 1.07e4T + 1.47e8T^{2} \)
47 \( 1 + 6.47e3T + 2.29e8T^{2} \)
53 \( 1 - 3.26e3T + 4.18e8T^{2} \)
59 \( 1 + 2.92e4T + 7.14e8T^{2} \)
61 \( 1 - 3.64e4T + 8.44e8T^{2} \)
67 \( 1 + 828.T + 1.35e9T^{2} \)
71 \( 1 - 2.80e4T + 1.80e9T^{2} \)
73 \( 1 + 7.61e4T + 2.07e9T^{2} \)
79 \( 1 - 1.07e4T + 3.07e9T^{2} \)
83 \( 1 - 9.40e4T + 3.93e9T^{2} \)
89 \( 1 + 4.35e4T + 5.58e9T^{2} \)
97 \( 1 - 3.41e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.94889412934630709668902917304, −12.92192468627101300965225775728, −11.88806597068515224093009565664, −10.02108248265011488039728458141, −9.057862781152959972362994168154, −7.80795271579086658016837742813, −6.81345856429996430442023192835, −4.38709060751967225066505483538, −3.39080156827967761729995215346, −2.04716824787560649346165555337, 2.04716824787560649346165555337, 3.39080156827967761729995215346, 4.38709060751967225066505483538, 6.81345856429996430442023192835, 7.80795271579086658016837742813, 9.057862781152959972362994168154, 10.02108248265011488039728458141, 11.88806597068515224093009565664, 12.92192468627101300965225775728, 13.94889412934630709668902917304

Graph of the $Z$-function along the critical line