L(s) = 1 | + 4·2-s + 30.5·3-s + 16·4-s − 25·5-s + 122.·6-s − 49·7-s + 64·8-s + 688.·9-s − 100·10-s + 392.·11-s + 488.·12-s − 631.·13-s − 196·14-s − 763.·15-s + 256·16-s − 1.37e3·17-s + 2.75e3·18-s + 1.49e3·19-s − 400·20-s − 1.49e3·21-s + 1.56e3·22-s − 4.57e3·23-s + 1.95e3·24-s + 625·25-s − 2.52e3·26-s + 1.35e4·27-s − 784·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1.95·3-s + 0.5·4-s − 0.447·5-s + 1.38·6-s − 0.377·7-s + 0.353·8-s + 2.83·9-s − 0.316·10-s + 0.977·11-s + 0.978·12-s − 1.03·13-s − 0.267·14-s − 0.875·15-s + 0.250·16-s − 1.15·17-s + 2.00·18-s + 0.951·19-s − 0.223·20-s − 0.740·21-s + 0.691·22-s − 1.80·23-s + 0.692·24-s + 0.200·25-s − 0.733·26-s + 3.59·27-s − 0.188·28-s + ⋯ |
Λ(s)=(=(70s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(70s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
4.455164068 |
L(21) |
≈ |
4.455164068 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−4T |
| 5 | 1+25T |
| 7 | 1+49T |
good | 3 | 1−30.5T+243T2 |
| 11 | 1−392.T+1.61e5T2 |
| 13 | 1+631.T+3.71e5T2 |
| 17 | 1+1.37e3T+1.41e6T2 |
| 19 | 1−1.49e3T+2.47e6T2 |
| 23 | 1+4.57e3T+6.43e6T2 |
| 29 | 1−2.70e3T+2.05e7T2 |
| 31 | 1+6.93e3T+2.86e7T2 |
| 37 | 1−1.47e3T+6.93e7T2 |
| 41 | 1−1.47e3T+1.15e8T2 |
| 43 | 1+1.07e4T+1.47e8T2 |
| 47 | 1+6.47e3T+2.29e8T2 |
| 53 | 1−3.26e3T+4.18e8T2 |
| 59 | 1+2.92e4T+7.14e8T2 |
| 61 | 1−3.64e4T+8.44e8T2 |
| 67 | 1+828.T+1.35e9T2 |
| 71 | 1−2.80e4T+1.80e9T2 |
| 73 | 1+7.61e4T+2.07e9T2 |
| 79 | 1−1.07e4T+3.07e9T2 |
| 83 | 1−9.40e4T+3.93e9T2 |
| 89 | 1+4.35e4T+5.58e9T2 |
| 97 | 1−3.41e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.94889412934630709668902917304, −12.92192468627101300965225775728, −11.88806597068515224093009565664, −10.02108248265011488039728458141, −9.057862781152959972362994168154, −7.80795271579086658016837742813, −6.81345856429996430442023192835, −4.38709060751967225066505483538, −3.39080156827967761729995215346, −2.04716824787560649346165555337,
2.04716824787560649346165555337, 3.39080156827967761729995215346, 4.38709060751967225066505483538, 6.81345856429996430442023192835, 7.80795271579086658016837742813, 9.057862781152959972362994168154, 10.02108248265011488039728458141, 11.88806597068515224093009565664, 12.92192468627101300965225775728, 13.94889412934630709668902917304