Properties

Label 2-7-7.6-c82-0-26
Degree $2$
Conductor $7$
Sign $1$
Analytic cond. $298.076$
Root an. cond. $17.2648$
Motivic weight $82$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9.29e11·2-s − 3.97e24·4-s − 4.45e34·7-s − 8.18e36·8-s + 1.33e39·9-s + 9.42e42·11-s − 4.14e46·14-s + 1.15e49·16-s + 1.23e51·18-s + 8.75e54·22-s − 9.48e55·23-s + 2.06e57·25-s + 1.76e59·28-s + 1.67e60·29-s + 5.03e61·32-s − 5.28e63·36-s + 4.70e63·37-s − 1.64e67·43-s − 3.74e67·44-s − 8.82e67·46-s + 1.98e69·49-s + 1.92e69·50-s − 7.24e70·53-s + 3.64e71·56-s + 1.56e72·58-s − 5.92e73·63-s − 9.20e72·64-s + ⋯
L(s)  = 1  + 0.422·2-s − 0.821·4-s − 7-s − 0.770·8-s + 9-s + 1.89·11-s − 0.422·14-s + 0.495·16-s + 0.422·18-s + 0.800·22-s − 1.40·23-s + 25-s + 0.821·28-s + 1.84·29-s + 0.979·32-s − 0.821·36-s + 0.237·37-s − 1.75·43-s − 1.55·44-s − 0.592·46-s + 49-s + 0.422·50-s − 1.46·53-s + 0.770·56-s + 0.781·58-s − 63-s − 0.0813·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(83-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7 ^{s/2} \, \Gamma_{\C}(s+41) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7\)
Sign: $1$
Analytic conductor: \(298.076\)
Root analytic conductor: \(17.2648\)
Motivic weight: \(82\)
Rational: yes
Arithmetic: yes
Character: $\chi_{7} (6, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7,\ (\ :41),\ 1)\)

Particular Values

\(L(\frac{83}{2})\) \(\approx\) \(2.332743248\)
\(L(\frac12)\) \(\approx\) \(2.332743248\)
\(L(42)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + p^{41} T \)
good2 \( 1 - 929828440857 T + p^{82} T^{2} \)
3 \( ( 1 - p^{41} T )( 1 + p^{41} T ) \)
5 \( ( 1 - p^{41} T )( 1 + p^{41} T ) \)
11 \( 1 - \)\(94\!\cdots\!34\)\( T + p^{82} T^{2} \)
13 \( ( 1 - p^{41} T )( 1 + p^{41} T ) \)
17 \( ( 1 - p^{41} T )( 1 + p^{41} T ) \)
19 \( ( 1 - p^{41} T )( 1 + p^{41} T ) \)
23 \( 1 + \)\(94\!\cdots\!22\)\( T + p^{82} T^{2} \)
29 \( 1 - \)\(16\!\cdots\!46\)\( T + p^{82} T^{2} \)
31 \( ( 1 - p^{41} T )( 1 + p^{41} T ) \)
37 \( 1 - \)\(47\!\cdots\!62\)\( T + p^{82} T^{2} \)
41 \( ( 1 - p^{41} T )( 1 + p^{41} T ) \)
43 \( 1 + \)\(16\!\cdots\!22\)\( T + p^{82} T^{2} \)
47 \( ( 1 - p^{41} T )( 1 + p^{41} T ) \)
53 \( 1 + \)\(72\!\cdots\!06\)\( T + p^{82} T^{2} \)
59 \( ( 1 - p^{41} T )( 1 + p^{41} T ) \)
61 \( ( 1 - p^{41} T )( 1 + p^{41} T ) \)
67 \( 1 + \)\(26\!\cdots\!98\)\( T + p^{82} T^{2} \)
71 \( 1 - \)\(78\!\cdots\!94\)\( T + p^{82} T^{2} \)
73 \( ( 1 - p^{41} T )( 1 + p^{41} T ) \)
79 \( 1 + \)\(10\!\cdots\!14\)\( T + p^{82} T^{2} \)
83 \( ( 1 - p^{41} T )( 1 + p^{41} T ) \)
89 \( ( 1 - p^{41} T )( 1 + p^{41} T ) \)
97 \( ( 1 - p^{41} T )( 1 + p^{41} T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.11209714959250904421956072934, −9.458163908204503492362739067397, −8.442487802088475622034344504841, −6.79331729994480751369895002080, −6.18911295319627165238071374858, −4.67499342146127929769933151833, −3.96221274098823545532108198199, −3.12655742372242018231172580272, −1.50419697945957726754840088197, −0.59894253748706376839805072082, 0.59894253748706376839805072082, 1.50419697945957726754840088197, 3.12655742372242018231172580272, 3.96221274098823545532108198199, 4.67499342146127929769933151833, 6.18911295319627165238071374858, 6.79331729994480751369895002080, 8.442487802088475622034344504841, 9.458163908204503492362739067397, 10.11209714959250904421956072934

Graph of the $Z$-function along the critical line