Properties

Label 2-7-7.6-c62-0-30
Degree $2$
Conductor $7$
Sign $1$
Analytic cond. $170.411$
Root an. cond. $13.0541$
Motivic weight $62$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.93e9·2-s + 1.08e19·4-s − 1.57e26·7-s + 2.45e28·8-s + 3.81e29·9-s + 2.91e32·11-s − 6.20e35·14-s + 4.65e37·16-s + 1.50e39·18-s + 1.14e42·22-s + 3.35e41·23-s + 2.16e43·25-s − 1.71e45·28-s − 2.38e45·29-s + 6.96e46·32-s + 4.14e48·36-s − 6.96e48·37-s + 7.08e50·43-s + 3.16e51·44-s + 1.32e51·46-s + 2.48e52·49-s + 8.52e52·50-s + 5.57e53·53-s − 3.87e54·56-s − 9.37e54·58-s − 6.01e55·63-s + 5.94e55·64-s + ⋯
L(s)  = 1  + 1.83·2-s + 2.35·4-s − 7-s + 2.47·8-s + 9-s + 1.51·11-s − 1.83·14-s + 2.18·16-s + 1.83·18-s + 2.77·22-s + 0.205·23-s + 25-s − 2.35·28-s − 1.10·29-s + 1.52·32-s + 2.35·36-s − 1.69·37-s + 1.63·43-s + 3.57·44-s + 0.376·46-s + 49-s + 1.83·50-s + 1.96·53-s − 2.47·56-s − 2.02·58-s − 63-s + 0.606·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(63-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7 ^{s/2} \, \Gamma_{\C}(s+31) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7\)
Sign: $1$
Analytic conductor: \(170.411\)
Root analytic conductor: \(13.0541\)
Motivic weight: \(62\)
Rational: yes
Arithmetic: yes
Character: $\chi_{7} (6, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7,\ (\ :31),\ 1)\)

Particular Values

\(L(\frac{63}{2})\) \(\approx\) \(9.159696375\)
\(L(\frac12)\) \(\approx\) \(9.159696375\)
\(L(32)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + p^{31} T \)
good2 \( 1 - 3932792553 T + p^{62} T^{2} \)
3 \( ( 1 - p^{31} T )( 1 + p^{31} T ) \)
5 \( ( 1 - p^{31} T )( 1 + p^{31} T ) \)
11 \( 1 - \)\(29\!\cdots\!94\)\( T + p^{62} T^{2} \)
13 \( ( 1 - p^{31} T )( 1 + p^{31} T ) \)
17 \( ( 1 - p^{31} T )( 1 + p^{31} T ) \)
19 \( ( 1 - p^{31} T )( 1 + p^{31} T ) \)
23 \( 1 - \)\(33\!\cdots\!82\)\( T + p^{62} T^{2} \)
29 \( 1 + \)\(23\!\cdots\!54\)\( T + p^{62} T^{2} \)
31 \( ( 1 - p^{31} T )( 1 + p^{31} T ) \)
37 \( 1 + \)\(69\!\cdots\!62\)\( T + p^{62} T^{2} \)
41 \( ( 1 - p^{31} T )( 1 + p^{31} T ) \)
43 \( 1 - \)\(70\!\cdots\!42\)\( T + p^{62} T^{2} \)
47 \( ( 1 - p^{31} T )( 1 + p^{31} T ) \)
53 \( 1 - \)\(55\!\cdots\!06\)\( T + p^{62} T^{2} \)
59 \( ( 1 - p^{31} T )( 1 + p^{31} T ) \)
61 \( ( 1 - p^{31} T )( 1 + p^{31} T ) \)
67 \( 1 - \)\(74\!\cdots\!18\)\( T + p^{62} T^{2} \)
71 \( 1 - \)\(28\!\cdots\!14\)\( T + p^{62} T^{2} \)
73 \( ( 1 - p^{31} T )( 1 + p^{31} T ) \)
79 \( 1 - \)\(10\!\cdots\!06\)\( T + p^{62} T^{2} \)
83 \( ( 1 - p^{31} T )( 1 + p^{31} T ) \)
89 \( ( 1 - p^{31} T )( 1 + p^{31} T ) \)
97 \( ( 1 - p^{31} T )( 1 + p^{31} T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.07322510995190391895885515981, −10.72568361698372758381620345557, −9.299096120252366647512242445858, −7.07747342280334843730060651400, −6.57079909215480945051628281358, −5.35814832475925087052659321099, −4.05715000399782633143013801802, −3.56553689192381943492560362696, −2.24317214511573201003239523294, −1.05268485899384966427458322576, 1.05268485899384966427458322576, 2.24317214511573201003239523294, 3.56553689192381943492560362696, 4.05715000399782633143013801802, 5.35814832475925087052659321099, 6.57079909215480945051628281358, 7.07747342280334843730060651400, 9.299096120252366647512242445858, 10.72568361698372758381620345557, 12.07322510995190391895885515981

Graph of the $Z$-function along the critical line