Properties

Label 2-7-7.6-c56-0-19
Degree $2$
Conductor $7$
Sign $1$
Analytic cond. $139.027$
Root an. cond. $11.7909$
Motivic weight $56$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9.81e7·2-s − 6.24e16·4-s + 4.59e23·7-s − 1.31e25·8-s + 5.23e26·9-s + 3.44e28·11-s + 4.51e31·14-s + 3.20e33·16-s + 5.13e34·18-s + 3.37e36·22-s + 6.95e37·23-s + 1.38e39·25-s − 2.87e40·28-s − 9.04e40·29-s + 1.26e42·32-s − 3.26e43·36-s − 1.33e44·37-s − 3.27e45·43-s − 2.14e45·44-s + 6.82e45·46-s + 2.11e47·49-s + 1.36e47·50-s − 5.69e46·53-s − 6.06e48·56-s − 8.87e48·58-s + 2.40e50·63-s − 1.06e50·64-s + ⋯
L(s)  = 1  + 0.365·2-s − 0.866·4-s + 7-s − 0.682·8-s + 9-s + 0.238·11-s + 0.365·14-s + 0.617·16-s + 0.365·18-s + 0.0872·22-s + 0.517·23-s + 25-s − 0.866·28-s − 1.02·29-s + 0.907·32-s − 0.866·36-s − 1.64·37-s − 0.599·43-s − 0.206·44-s + 0.189·46-s + 49-s + 0.365·50-s − 0.0299·53-s − 0.682·56-s − 0.373·58-s + 63-s − 0.285·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(57-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7 ^{s/2} \, \Gamma_{\C}(s+28) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7\)
Sign: $1$
Analytic conductor: \(139.027\)
Root analytic conductor: \(11.7909\)
Motivic weight: \(56\)
Rational: yes
Arithmetic: yes
Character: $\chi_{7} (6, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7,\ (\ :28),\ 1)\)

Particular Values

\(L(\frac{57}{2})\) \(\approx\) \(2.691063296\)
\(L(\frac12)\) \(\approx\) \(2.691063296\)
\(L(29)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 - p^{28} T \)
good2 \( 1 - 98118689 T + p^{56} T^{2} \)
3 \( ( 1 - p^{28} T )( 1 + p^{28} T ) \)
5 \( ( 1 - p^{28} T )( 1 + p^{28} T ) \)
11 \( 1 - \)\(34\!\cdots\!34\)\( T + p^{56} T^{2} \)
13 \( ( 1 - p^{28} T )( 1 + p^{28} T ) \)
17 \( ( 1 - p^{28} T )( 1 + p^{28} T ) \)
19 \( ( 1 - p^{28} T )( 1 + p^{28} T ) \)
23 \( 1 - \)\(69\!\cdots\!74\)\( T + p^{56} T^{2} \)
29 \( 1 + \)\(90\!\cdots\!86\)\( T + p^{56} T^{2} \)
31 \( ( 1 - p^{28} T )( 1 + p^{28} T ) \)
37 \( 1 + \)\(13\!\cdots\!46\)\( T + p^{56} T^{2} \)
41 \( ( 1 - p^{28} T )( 1 + p^{28} T ) \)
43 \( 1 + \)\(32\!\cdots\!66\)\( T + p^{56} T^{2} \)
47 \( ( 1 - p^{28} T )( 1 + p^{28} T ) \)
53 \( 1 + \)\(56\!\cdots\!78\)\( T + p^{56} T^{2} \)
59 \( ( 1 - p^{28} T )( 1 + p^{28} T ) \)
61 \( ( 1 - p^{28} T )( 1 + p^{28} T ) \)
67 \( 1 - \)\(83\!\cdots\!74\)\( T + p^{56} T^{2} \)
71 \( 1 - \)\(78\!\cdots\!94\)\( T + p^{56} T^{2} \)
73 \( ( 1 - p^{28} T )( 1 + p^{28} T ) \)
79 \( 1 - \)\(14\!\cdots\!34\)\( T + p^{56} T^{2} \)
83 \( ( 1 - p^{28} T )( 1 + p^{28} T ) \)
89 \( ( 1 - p^{28} T )( 1 + p^{28} T ) \)
97 \( ( 1 - p^{28} T )( 1 + p^{28} T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.17796738075393806019582021312, −10.72445969063641574394481608253, −9.396682758796202351692448511406, −8.300054467971678704872937419408, −6.98299051945250417710894800270, −5.34020775366084687700796475512, −4.53812617102688119330487380319, −3.49317666435957468371173845186, −1.79368835236140323353096823221, −0.74287433347432962124817826957, 0.74287433347432962124817826957, 1.79368835236140323353096823221, 3.49317666435957468371173845186, 4.53812617102688119330487380319, 5.34020775366084687700796475512, 6.98299051945250417710894800270, 8.300054467971678704872937419408, 9.396682758796202351692448511406, 10.72445969063641574394481608253, 12.17796738075393806019582021312

Graph of the $Z$-function along the critical line