Properties

Label 2-7-7.6-c28-0-8
Degree $2$
Conductor $7$
Sign $1$
Analytic cond. $34.7679$
Root an. cond. $5.89643$
Motivic weight $28$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.51e4·2-s + 3.66e8·4-s + 6.78e11·7-s − 2.47e12·8-s + 2.28e13·9-s + 5.68e14·11-s − 1.70e16·14-s − 3.60e16·16-s − 5.76e17·18-s − 1.43e19·22-s − 1.83e19·23-s + 3.72e19·25-s + 2.48e20·28-s + 2.94e20·29-s + 1.57e21·32-s + 8.38e21·36-s − 5.39e21·37-s + 8.74e22·43-s + 2.08e23·44-s + 4.63e23·46-s + 4.59e23·49-s − 9.38e23·50-s − 1.93e24·53-s − 1.67e24·56-s − 7.41e24·58-s + 1.55e25·63-s − 2.99e25·64-s + ⋯
L(s)  = 1  − 1.53·2-s + 1.36·4-s + 7-s − 0.562·8-s + 9-s + 1.49·11-s − 1.53·14-s − 0.500·16-s − 1.53·18-s − 2.30·22-s − 1.58·23-s + 25-s + 1.36·28-s + 0.989·29-s + 1.33·32-s + 1.36·36-s − 0.598·37-s + 1.18·43-s + 2.04·44-s + 2.44·46-s + 49-s − 1.53·50-s − 1.40·53-s − 0.562·56-s − 1.52·58-s + 63-s − 1.54·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(29-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7 ^{s/2} \, \Gamma_{\C}(s+14) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7\)
Sign: $1$
Analytic conductor: \(34.7679\)
Root analytic conductor: \(5.89643\)
Motivic weight: \(28\)
Rational: yes
Arithmetic: yes
Character: $\chi_{7} (6, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7,\ (\ :14),\ 1)\)

Particular Values

\(L(\frac{29}{2})\) \(\approx\) \(1.273913219\)
\(L(\frac12)\) \(\approx\) \(1.273913219\)
\(L(15)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 - p^{14} T \)
good2 \( 1 + 25199 T + p^{28} T^{2} \)
3 \( ( 1 - p^{14} T )( 1 + p^{14} T ) \)
5 \( ( 1 - p^{14} T )( 1 + p^{14} T ) \)
11 \( 1 - 568192759333714 T + p^{28} T^{2} \)
13 \( ( 1 - p^{14} T )( 1 + p^{14} T ) \)
17 \( ( 1 - p^{14} T )( 1 + p^{14} T ) \)
19 \( ( 1 - p^{14} T )( 1 + p^{14} T ) \)
23 \( 1 + 18394326757532094494 T + p^{28} T^{2} \)
29 \( 1 - \)\(29\!\cdots\!94\)\( T + p^{28} T^{2} \)
31 \( ( 1 - p^{14} T )( 1 + p^{14} T ) \)
37 \( 1 + \)\(53\!\cdots\!14\)\( T + p^{28} T^{2} \)
41 \( ( 1 - p^{14} T )( 1 + p^{14} T ) \)
43 \( 1 - \)\(87\!\cdots\!06\)\( T + p^{28} T^{2} \)
47 \( ( 1 - p^{14} T )( 1 + p^{14} T ) \)
53 \( 1 + \)\(19\!\cdots\!62\)\( T + p^{28} T^{2} \)
59 \( ( 1 - p^{14} T )( 1 + p^{14} T ) \)
61 \( ( 1 - p^{14} T )( 1 + p^{14} T ) \)
67 \( 1 - \)\(59\!\cdots\!66\)\( T + p^{28} T^{2} \)
71 \( 1 + \)\(14\!\cdots\!46\)\( T + p^{28} T^{2} \)
73 \( ( 1 - p^{14} T )( 1 + p^{14} T ) \)
79 \( 1 - \)\(64\!\cdots\!34\)\( T + p^{28} T^{2} \)
83 \( ( 1 - p^{14} T )( 1 + p^{14} T ) \)
89 \( ( 1 - p^{14} T )( 1 + p^{14} T ) \)
97 \( ( 1 - p^{14} T )( 1 + p^{14} T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.93804195548095678425704110342, −14.24969343257818669202313487775, −11.97762873468200571247743591567, −10.58631928583297483171713879117, −9.295654392779987947191608508145, −8.040491481529012341994375743931, −6.72823331811219035319726139558, −4.33094946849864392265524210183, −1.82768771001228429961833155644, −0.952380515168626715889351580275, 0.952380515168626715889351580275, 1.82768771001228429961833155644, 4.33094946849864392265524210183, 6.72823331811219035319726139558, 8.040491481529012341994375743931, 9.295654392779987947191608508145, 10.58631928583297483171713879117, 11.97762873468200571247743591567, 14.24969343257818669202313487775, 15.93804195548095678425704110342

Graph of the $Z$-function along the critical line