L(s) = 1 | + (1 − 1.73i)5-s + (2 + 3.46i)11-s + (1 − 1.73i)13-s + 2·17-s + 4·19-s + (−4 + 6.92i)23-s + (0.500 + 0.866i)25-s + (−3 − 5.19i)29-s + (4 − 6.92i)31-s + 6·37-s + (3 − 5.19i)41-s + (2 + 3.46i)43-s + (3.5 − 6.06i)49-s − 2·53-s + 7.99·55-s + ⋯ |
L(s) = 1 | + (0.447 − 0.774i)5-s + (0.603 + 1.04i)11-s + (0.277 − 0.480i)13-s + 0.485·17-s + 0.917·19-s + (−0.834 + 1.44i)23-s + (0.100 + 0.173i)25-s + (−0.557 − 0.964i)29-s + (0.718 − 1.24i)31-s + 0.986·37-s + (0.468 − 0.811i)41-s + (0.304 + 0.528i)43-s + (0.5 − 0.866i)49-s − 0.274·53-s + 1.07·55-s + ⋯ |
Λ(s)=(=(1296s/2ΓC(s)L(s)(0.939+0.342i)Λ(2−s)
Λ(s)=(=(1296s/2ΓC(s+1/2)L(s)(0.939+0.342i)Λ(1−s)
Degree: |
2 |
Conductor: |
1296
= 24⋅34
|
Sign: |
0.939+0.342i
|
Analytic conductor: |
10.3486 |
Root analytic conductor: |
3.21692 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1296(433,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1296, ( :1/2), 0.939+0.342i)
|
Particular Values
L(1) |
≈ |
1.946536842 |
L(21) |
≈ |
1.946536842 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+(−1+1.73i)T+(−2.5−4.33i)T2 |
| 7 | 1+(−3.5+6.06i)T2 |
| 11 | 1+(−2−3.46i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−1+1.73i)T+(−6.5−11.2i)T2 |
| 17 | 1−2T+17T2 |
| 19 | 1−4T+19T2 |
| 23 | 1+(4−6.92i)T+(−11.5−19.9i)T2 |
| 29 | 1+(3+5.19i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−4+6.92i)T+(−15.5−26.8i)T2 |
| 37 | 1−6T+37T2 |
| 41 | 1+(−3+5.19i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−2−3.46i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−23.5+40.7i)T2 |
| 53 | 1+2T+53T2 |
| 59 | 1+(−2+3.46i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−1−1.73i)T+(−30.5+52.8i)T2 |
| 67 | 1+(2−3.46i)T+(−33.5−58.0i)T2 |
| 71 | 1+8T+71T2 |
| 73 | 1−10T+73T2 |
| 79 | 1+(4+6.92i)T+(−39.5+68.4i)T2 |
| 83 | 1+(2+3.46i)T+(−41.5+71.8i)T2 |
| 89 | 1+6T+89T2 |
| 97 | 1+(1+1.73i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.693080612129533857606690196559, −8.983782134721568185013332611342, −7.85386502371059481741805053357, −7.37971193477624688681199347483, −6.06476310441097639881411943699, −5.50723316545421681844032654982, −4.49322110001952021370024627619, −3.59357217927929828770270182953, −2.15828077194064114769502294055, −1.06535465090911142508717297971,
1.15379523108787770338247329142, 2.61186409721887211558019447469, 3.43926254724106768493647356392, 4.52768910472864278499460128736, 5.75833180442213004100776537015, 6.35430308442182449281840083855, 7.09746766904641840388238040625, 8.162894979831527448249214535997, 8.897857964504639591692999712761, 9.739436916257339705893562759834