L(s) = 1 | + (1 − 1.73i)5-s + (2 + 3.46i)11-s + (1 − 1.73i)13-s + 2·17-s + 4·19-s + (−4 + 6.92i)23-s + (0.500 + 0.866i)25-s + (−3 − 5.19i)29-s + (4 − 6.92i)31-s + 6·37-s + (3 − 5.19i)41-s + (2 + 3.46i)43-s + (3.5 − 6.06i)49-s − 2·53-s + 7.99·55-s + ⋯ |
L(s) = 1 | + (0.447 − 0.774i)5-s + (0.603 + 1.04i)11-s + (0.277 − 0.480i)13-s + 0.485·17-s + 0.917·19-s + (−0.834 + 1.44i)23-s + (0.100 + 0.173i)25-s + (−0.557 − 0.964i)29-s + (0.718 − 1.24i)31-s + 0.986·37-s + (0.468 − 0.811i)41-s + (0.304 + 0.528i)43-s + (0.5 − 0.866i)49-s − 0.274·53-s + 1.07·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.946536842\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.946536842\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-1 + 1.73i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2 - 3.46i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-1 + 1.73i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 2T + 17T^{2} \) |
| 19 | \( 1 - 4T + 19T^{2} \) |
| 23 | \( 1 + (4 - 6.92i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3 + 5.19i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-4 + 6.92i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 6T + 37T^{2} \) |
| 41 | \( 1 + (-3 + 5.19i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2 - 3.46i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 2T + 53T^{2} \) |
| 59 | \( 1 + (-2 + 3.46i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1 - 1.73i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2 - 3.46i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 8T + 71T^{2} \) |
| 73 | \( 1 - 10T + 73T^{2} \) |
| 79 | \( 1 + (4 + 6.92i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (2 + 3.46i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 6T + 89T^{2} \) |
| 97 | \( 1 + (1 + 1.73i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.693080612129533857606690196559, −8.983782134721568185013332611342, −7.85386502371059481741805053357, −7.37971193477624688681199347483, −6.06476310441097639881411943699, −5.50723316545421681844032654982, −4.49322110001952021370024627619, −3.59357217927929828770270182953, −2.15828077194064114769502294055, −1.06535465090911142508717297971,
1.15379523108787770338247329142, 2.61186409721887211558019447469, 3.43926254724106768493647356392, 4.52768910472864278499460128736, 5.75833180442213004100776537015, 6.35430308442182449281840083855, 7.09746766904641840388238040625, 8.162894979831527448249214535997, 8.897857964504639591692999712761, 9.739436916257339705893562759834