L(s) = 1 | + 9·5-s + 31·7-s − 15·11-s − 37·13-s + 42·17-s + 28·19-s + 195·23-s − 44·25-s − 111·29-s + 205·31-s + 279·35-s − 166·37-s + 261·41-s + 43·43-s + 177·47-s + 618·49-s − 114·53-s − 135·55-s + 159·59-s + 191·61-s − 333·65-s + 421·67-s + 156·71-s + 182·73-s − 465·77-s − 1.13e3·79-s − 1.08e3·83-s + ⋯ |
L(s) = 1 | + 0.804·5-s + 1.67·7-s − 0.411·11-s − 0.789·13-s + 0.599·17-s + 0.338·19-s + 1.76·23-s − 0.351·25-s − 0.710·29-s + 1.18·31-s + 1.34·35-s − 0.737·37-s + 0.994·41-s + 0.152·43-s + 0.549·47-s + 1.80·49-s − 0.295·53-s − 0.330·55-s + 0.350·59-s + 0.400·61-s − 0.635·65-s + 0.767·67-s + 0.260·71-s + 0.291·73-s − 0.688·77-s − 1.61·79-s − 1.43·83-s + ⋯ |
Λ(s)=(=(1296s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1296s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
3.261229088 |
L(21) |
≈ |
3.261229088 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1−9T+p3T2 |
| 7 | 1−31T+p3T2 |
| 11 | 1+15T+p3T2 |
| 13 | 1+37T+p3T2 |
| 17 | 1−42T+p3T2 |
| 19 | 1−28T+p3T2 |
| 23 | 1−195T+p3T2 |
| 29 | 1+111T+p3T2 |
| 31 | 1−205T+p3T2 |
| 37 | 1+166T+p3T2 |
| 41 | 1−261T+p3T2 |
| 43 | 1−pT+p3T2 |
| 47 | 1−177T+p3T2 |
| 53 | 1+114T+p3T2 |
| 59 | 1−159T+p3T2 |
| 61 | 1−191T+p3T2 |
| 67 | 1−421T+p3T2 |
| 71 | 1−156T+p3T2 |
| 73 | 1−182T+p3T2 |
| 79 | 1+1133T+p3T2 |
| 83 | 1+1083T+p3T2 |
| 89 | 1−1050T+p3T2 |
| 97 | 1+901T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.320273173894260984714815690609, −8.424815599384315930766334221184, −7.67759974536129000334768677359, −6.98205811420524123855911819601, −5.63574592115388834166004270235, −5.19240098143359732203485962259, −4.35613785306754757519506359359, −2.87344381244706326024240919920, −1.94269867512205913631379968250, −0.968643922886922191920894929279,
0.968643922886922191920894929279, 1.94269867512205913631379968250, 2.87344381244706326024240919920, 4.35613785306754757519506359359, 5.19240098143359732203485962259, 5.63574592115388834166004270235, 6.98205811420524123855911819601, 7.67759974536129000334768677359, 8.424815599384315930766334221184, 9.320273173894260984714815690609