L(s) = 1 | + (0.5 − 0.363i)2-s + (−0.190 + 0.587i)4-s + (0.309 − 0.951i)7-s + (0.309 + 0.951i)8-s + (0.809 + 0.587i)11-s + (−0.190 − 0.587i)14-s + 0.618·22-s − 0.618·23-s + (0.309 + 0.951i)25-s + (0.5 + 0.363i)28-s + (0.5 − 1.53i)29-s − 32-s + (0.190 − 0.587i)37-s − 1.61·43-s + (−0.5 + 0.363i)44-s + ⋯ |
L(s) = 1 | + (0.5 − 0.363i)2-s + (−0.190 + 0.587i)4-s + (0.309 − 0.951i)7-s + (0.309 + 0.951i)8-s + (0.809 + 0.587i)11-s + (−0.190 − 0.587i)14-s + 0.618·22-s − 0.618·23-s + (0.309 + 0.951i)25-s + (0.5 + 0.363i)28-s + (0.5 − 1.53i)29-s − 32-s + (0.190 − 0.587i)37-s − 1.61·43-s + (−0.5 + 0.363i)44-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)(0.999+0.0237i)Λ(1−s)
Λ(s)=(=(693s/2ΓC(s)L(s)(0.999+0.0237i)Λ(1−s)
Degree: |
2 |
Conductor: |
693
= 32⋅7⋅11
|
Sign: |
0.999+0.0237i
|
Analytic conductor: |
0.345852 |
Root analytic conductor: |
0.588091 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ693(685,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 693, ( :0), 0.999+0.0237i)
|
Particular Values
L(21) |
≈ |
1.217269030 |
L(21) |
≈ |
1.217269030 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−0.309+0.951i)T |
| 11 | 1+(−0.809−0.587i)T |
good | 2 | 1+(−0.5+0.363i)T+(0.309−0.951i)T2 |
| 5 | 1+(−0.309−0.951i)T2 |
| 13 | 1+(−0.309+0.951i)T2 |
| 17 | 1+(−0.309−0.951i)T2 |
| 19 | 1+(0.809−0.587i)T2 |
| 23 | 1+0.618T+T2 |
| 29 | 1+(−0.5+1.53i)T+(−0.809−0.587i)T2 |
| 31 | 1+(−0.309+0.951i)T2 |
| 37 | 1+(−0.190+0.587i)T+(−0.809−0.587i)T2 |
| 41 | 1+(0.809−0.587i)T2 |
| 43 | 1+1.61T+T2 |
| 47 | 1+(0.809−0.587i)T2 |
| 53 | 1+(1.30−0.951i)T+(0.309−0.951i)T2 |
| 59 | 1+(0.809+0.587i)T2 |
| 61 | 1+(−0.309−0.951i)T2 |
| 67 | 1+1.61T+T2 |
| 71 | 1+(1.30+0.951i)T+(0.309+0.951i)T2 |
| 73 | 1+(0.809+0.587i)T2 |
| 79 | 1+(−1.30+0.951i)T+(0.309−0.951i)T2 |
| 83 | 1+(−0.309−0.951i)T2 |
| 89 | 1−T2 |
| 97 | 1+(−0.309+0.951i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.83301681733723041346287853852, −9.893517205601291695119718822597, −8.968929824521553842450707112374, −7.925261414363894252373646350795, −7.32474443001207576625097753417, −6.21909408234073838145710325050, −4.81523183367441219737895470928, −4.18889246149609497396793835941, −3.26139941008477391550068681989, −1.78605585050675089750236965703,
1.57042847074569540143355802166, 3.19473303539169765575050987320, 4.46240226692688232180939540174, 5.28591457278548246928516887718, 6.18390267531503340560092388832, 6.79147399468227445010776211233, 8.218766942795135459760244403772, 8.909348253926549395740526823902, 9.779916010640865863200040405013, 10.65062822668939876413655651983