L(s) = 1 | + (0.5 − 0.363i)2-s + (−0.190 + 0.587i)4-s + (0.309 − 0.951i)7-s + (0.309 + 0.951i)8-s + (0.809 + 0.587i)11-s + (−0.190 − 0.587i)14-s + 0.618·22-s − 0.618·23-s + (0.309 + 0.951i)25-s + (0.5 + 0.363i)28-s + (0.5 − 1.53i)29-s − 32-s + (0.190 − 0.587i)37-s − 1.61·43-s + (−0.5 + 0.363i)44-s + ⋯ |
L(s) = 1 | + (0.5 − 0.363i)2-s + (−0.190 + 0.587i)4-s + (0.309 − 0.951i)7-s + (0.309 + 0.951i)8-s + (0.809 + 0.587i)11-s + (−0.190 − 0.587i)14-s + 0.618·22-s − 0.618·23-s + (0.309 + 0.951i)25-s + (0.5 + 0.363i)28-s + (0.5 − 1.53i)29-s − 32-s + (0.190 − 0.587i)37-s − 1.61·43-s + (−0.5 + 0.363i)44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0237i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0237i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.217269030\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.217269030\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.309 + 0.951i)T \) |
| 11 | \( 1 + (-0.809 - 0.587i)T \) |
good | 2 | \( 1 + (-0.5 + 0.363i)T + (0.309 - 0.951i)T^{2} \) |
| 5 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 13 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 17 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 19 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 23 | \( 1 + 0.618T + T^{2} \) |
| 29 | \( 1 + (-0.5 + 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 31 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (-0.190 + 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 41 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 + 1.61T + T^{2} \) |
| 47 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (1.30 - 0.951i)T + (0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 67 | \( 1 + 1.61T + T^{2} \) |
| 71 | \( 1 + (1.30 + 0.951i)T + (0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (-1.30 + 0.951i)T + (0.309 - 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.83301681733723041346287853852, −9.893517205601291695119718822597, −8.968929824521553842450707112374, −7.925261414363894252373646350795, −7.32474443001207576625097753417, −6.21909408234073838145710325050, −4.81523183367441219737895470928, −4.18889246149609497396793835941, −3.26139941008477391550068681989, −1.78605585050675089750236965703,
1.57042847074569540143355802166, 3.19473303539169765575050987320, 4.46240226692688232180939540174, 5.28591457278548246928516887718, 6.18390267531503340560092388832, 6.79147399468227445010776211233, 8.218766942795135459760244403772, 8.909348253926549395740526823902, 9.779916010640865863200040405013, 10.65062822668939876413655651983