L(s) = 1 | + (0.363 − 1.11i)2-s + (−0.309 − 0.224i)4-s + (0.809 + 0.587i)7-s + (0.587 − 0.427i)8-s + (−0.951 + 0.309i)11-s + (0.951 − 0.690i)14-s + (−0.381 − 1.17i)16-s + 1.17i·22-s + 1.17·23-s + (−0.809 + 0.587i)25-s + (−0.118 − 0.363i)28-s + (−1.53 − 1.11i)29-s − 0.726·32-s + (−1.30 − 0.951i)37-s − 0.618·43-s + (0.363 + 0.118i)44-s + ⋯ |
L(s) = 1 | + (0.363 − 1.11i)2-s + (−0.309 − 0.224i)4-s + (0.809 + 0.587i)7-s + (0.587 − 0.427i)8-s + (−0.951 + 0.309i)11-s + (0.951 − 0.690i)14-s + (−0.381 − 1.17i)16-s + 1.17i·22-s + 1.17·23-s + (−0.809 + 0.587i)25-s + (−0.118 − 0.363i)28-s + (−1.53 − 1.11i)29-s − 0.726·32-s + (−1.30 − 0.951i)37-s − 0.618·43-s + (0.363 + 0.118i)44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.352 + 0.935i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.352 + 0.935i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.255615066\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.255615066\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.809 - 0.587i)T \) |
| 11 | \( 1 + (0.951 - 0.309i)T \) |
good | 2 | \( 1 + (-0.363 + 1.11i)T + (-0.809 - 0.587i)T^{2} \) |
| 5 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 17 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 - 1.17T + T^{2} \) |
| 29 | \( 1 + (1.53 + 1.11i)T + (0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 37 | \( 1 + (1.30 + 0.951i)T + (0.309 + 0.951i)T^{2} \) |
| 41 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 + 0.618T + T^{2} \) |
| 47 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (0.587 - 1.80i)T + (-0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 67 | \( 1 - 0.618T + T^{2} \) |
| 71 | \( 1 + (-0.587 - 1.80i)T + (-0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 79 | \( 1 + (-0.190 + 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 83 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.809 + 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.82504240809508026269838967272, −9.864678312453935741675008658535, −9.004621545635098128725605270342, −7.84967796070815818449237866688, −7.21413152871636226217493591879, −5.66116108082301288702986247849, −4.89345401454879941305756148968, −3.80749282235803645485132562817, −2.63228007694156265733524050160, −1.74574801764768563076769334235,
1.85375757083910014426667130809, 3.55422686682421693938063198499, 4.91986103956663797703720217533, 5.29141637295304500988309655485, 6.50190373705563254892509928295, 7.31741051720440190884784049579, 7.983519422038585150805871565737, 8.732277150523890300205766232812, 10.09061763107224981147021016718, 10.88493681460247936380096952156