L(s) = 1 | + (0.363 − 1.11i)2-s + (−0.309 − 0.224i)4-s + (0.809 + 0.587i)7-s + (0.587 − 0.427i)8-s + (−0.951 + 0.309i)11-s + (0.951 − 0.690i)14-s + (−0.381 − 1.17i)16-s + 1.17i·22-s + 1.17·23-s + (−0.809 + 0.587i)25-s + (−0.118 − 0.363i)28-s + (−1.53 − 1.11i)29-s − 0.726·32-s + (−1.30 − 0.951i)37-s − 0.618·43-s + (0.363 + 0.118i)44-s + ⋯ |
L(s) = 1 | + (0.363 − 1.11i)2-s + (−0.309 − 0.224i)4-s + (0.809 + 0.587i)7-s + (0.587 − 0.427i)8-s + (−0.951 + 0.309i)11-s + (0.951 − 0.690i)14-s + (−0.381 − 1.17i)16-s + 1.17i·22-s + 1.17·23-s + (−0.809 + 0.587i)25-s + (−0.118 − 0.363i)28-s + (−1.53 − 1.11i)29-s − 0.726·32-s + (−1.30 − 0.951i)37-s − 0.618·43-s + (0.363 + 0.118i)44-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)(0.352+0.935i)Λ(1−s)
Λ(s)=(=(693s/2ΓC(s)L(s)(0.352+0.935i)Λ(1−s)
Degree: |
2 |
Conductor: |
693
= 32⋅7⋅11
|
Sign: |
0.352+0.935i
|
Analytic conductor: |
0.345852 |
Root analytic conductor: |
0.588091 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ693(559,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 693, ( :0), 0.352+0.935i)
|
Particular Values
L(21) |
≈ |
1.255615066 |
L(21) |
≈ |
1.255615066 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−0.809−0.587i)T |
| 11 | 1+(0.951−0.309i)T |
good | 2 | 1+(−0.363+1.11i)T+(−0.809−0.587i)T2 |
| 5 | 1+(0.809−0.587i)T2 |
| 13 | 1+(0.809+0.587i)T2 |
| 17 | 1+(0.809−0.587i)T2 |
| 19 | 1+(−0.309+0.951i)T2 |
| 23 | 1−1.17T+T2 |
| 29 | 1+(1.53+1.11i)T+(0.309+0.951i)T2 |
| 31 | 1+(0.809+0.587i)T2 |
| 37 | 1+(1.30+0.951i)T+(0.309+0.951i)T2 |
| 41 | 1+(−0.309+0.951i)T2 |
| 43 | 1+0.618T+T2 |
| 47 | 1+(−0.309+0.951i)T2 |
| 53 | 1+(0.587−1.80i)T+(−0.809−0.587i)T2 |
| 59 | 1+(−0.309−0.951i)T2 |
| 61 | 1+(0.809−0.587i)T2 |
| 67 | 1−0.618T+T2 |
| 71 | 1+(−0.587−1.80i)T+(−0.809+0.587i)T2 |
| 73 | 1+(−0.309−0.951i)T2 |
| 79 | 1+(−0.190+0.587i)T+(−0.809−0.587i)T2 |
| 83 | 1+(0.809−0.587i)T2 |
| 89 | 1−T2 |
| 97 | 1+(0.809+0.587i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.82504240809508026269838967272, −9.864678312453935741675008658535, −9.004621545635098128725605270342, −7.84967796070815818449237866688, −7.21413152871636226217493591879, −5.66116108082301288702986247849, −4.89345401454879941305756148968, −3.80749282235803645485132562817, −2.63228007694156265733524050160, −1.74574801764768563076769334235,
1.85375757083910014426667130809, 3.55422686682421693938063198499, 4.91986103956663797703720217533, 5.29141637295304500988309655485, 6.50190373705563254892509928295, 7.31741051720440190884784049579, 7.983519422038585150805871565737, 8.732277150523890300205766232812, 10.09061763107224981147021016718, 10.88493681460247936380096952156