Properties

Label 2-693-77.20-c0-0-1
Degree $2$
Conductor $693$
Sign $0.352 + 0.935i$
Analytic cond. $0.345852$
Root an. cond. $0.588091$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.363 − 1.11i)2-s + (−0.309 − 0.224i)4-s + (0.809 + 0.587i)7-s + (0.587 − 0.427i)8-s + (−0.951 + 0.309i)11-s + (0.951 − 0.690i)14-s + (−0.381 − 1.17i)16-s + 1.17i·22-s + 1.17·23-s + (−0.809 + 0.587i)25-s + (−0.118 − 0.363i)28-s + (−1.53 − 1.11i)29-s − 0.726·32-s + (−1.30 − 0.951i)37-s − 0.618·43-s + (0.363 + 0.118i)44-s + ⋯
L(s)  = 1  + (0.363 − 1.11i)2-s + (−0.309 − 0.224i)4-s + (0.809 + 0.587i)7-s + (0.587 − 0.427i)8-s + (−0.951 + 0.309i)11-s + (0.951 − 0.690i)14-s + (−0.381 − 1.17i)16-s + 1.17i·22-s + 1.17·23-s + (−0.809 + 0.587i)25-s + (−0.118 − 0.363i)28-s + (−1.53 − 1.11i)29-s − 0.726·32-s + (−1.30 − 0.951i)37-s − 0.618·43-s + (0.363 + 0.118i)44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.352 + 0.935i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.352 + 0.935i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $0.352 + 0.935i$
Analytic conductor: \(0.345852\)
Root analytic conductor: \(0.588091\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{693} (559, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 693,\ (\ :0),\ 0.352 + 0.935i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.255615066\)
\(L(\frac12)\) \(\approx\) \(1.255615066\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + (-0.809 - 0.587i)T \)
11 \( 1 + (0.951 - 0.309i)T \)
good2 \( 1 + (-0.363 + 1.11i)T + (-0.809 - 0.587i)T^{2} \)
5 \( 1 + (0.809 - 0.587i)T^{2} \)
13 \( 1 + (0.809 + 0.587i)T^{2} \)
17 \( 1 + (0.809 - 0.587i)T^{2} \)
19 \( 1 + (-0.309 + 0.951i)T^{2} \)
23 \( 1 - 1.17T + T^{2} \)
29 \( 1 + (1.53 + 1.11i)T + (0.309 + 0.951i)T^{2} \)
31 \( 1 + (0.809 + 0.587i)T^{2} \)
37 \( 1 + (1.30 + 0.951i)T + (0.309 + 0.951i)T^{2} \)
41 \( 1 + (-0.309 + 0.951i)T^{2} \)
43 \( 1 + 0.618T + T^{2} \)
47 \( 1 + (-0.309 + 0.951i)T^{2} \)
53 \( 1 + (0.587 - 1.80i)T + (-0.809 - 0.587i)T^{2} \)
59 \( 1 + (-0.309 - 0.951i)T^{2} \)
61 \( 1 + (0.809 - 0.587i)T^{2} \)
67 \( 1 - 0.618T + T^{2} \)
71 \( 1 + (-0.587 - 1.80i)T + (-0.809 + 0.587i)T^{2} \)
73 \( 1 + (-0.309 - 0.951i)T^{2} \)
79 \( 1 + (-0.190 + 0.587i)T + (-0.809 - 0.587i)T^{2} \)
83 \( 1 + (0.809 - 0.587i)T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 + (0.809 + 0.587i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.82504240809508026269838967272, −9.864678312453935741675008658535, −9.004621545635098128725605270342, −7.84967796070815818449237866688, −7.21413152871636226217493591879, −5.66116108082301288702986247849, −4.89345401454879941305756148968, −3.80749282235803645485132562817, −2.63228007694156265733524050160, −1.74574801764768563076769334235, 1.85375757083910014426667130809, 3.55422686682421693938063198499, 4.91986103956663797703720217533, 5.29141637295304500988309655485, 6.50190373705563254892509928295, 7.31741051720440190884784049579, 7.983519422038585150805871565737, 8.732277150523890300205766232812, 10.09061763107224981147021016718, 10.88493681460247936380096952156

Graph of the $Z$-function along the critical line