L(s) = 1 | + (0.643 − 1.11i)2-s + (0.171 + 0.296i)4-s + (1.95 − 3.39i)5-s + (−0.234 − 2.63i)7-s + 3.01·8-s + (−2.52 − 4.36i)10-s + (−0.5 − 0.866i)11-s − 3.04·13-s + (−3.08 − 1.43i)14-s + (1.59 − 2.76i)16-s + (1.98 + 3.44i)17-s + (−3.79 + 6.57i)19-s + 1.34·20-s − 1.28·22-s + (2.25 − 3.90i)23-s + ⋯ |
L(s) = 1 | + (0.455 − 0.788i)2-s + (0.0856 + 0.148i)4-s + (0.875 − 1.51i)5-s + (−0.0885 − 0.996i)7-s + 1.06·8-s + (−0.797 − 1.38i)10-s + (−0.150 − 0.261i)11-s − 0.843·13-s + (−0.825 − 0.383i)14-s + (0.399 − 0.692i)16-s + (0.481 + 0.834i)17-s + (−0.870 + 1.50i)19-s + 0.300·20-s − 0.274·22-s + (0.470 − 0.814i)23-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)(−0.363+0.931i)Λ(2−s)
Λ(s)=(=(693s/2ΓC(s+1/2)L(s)(−0.363+0.931i)Λ(1−s)
Degree: |
2 |
Conductor: |
693
= 32⋅7⋅11
|
Sign: |
−0.363+0.931i
|
Analytic conductor: |
5.53363 |
Root analytic conductor: |
2.35236 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ693(100,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 693, ( :1/2), −0.363+0.931i)
|
Particular Values
L(1) |
≈ |
1.31672−1.92629i |
L(21) |
≈ |
1.31672−1.92629i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(0.234+2.63i)T |
| 11 | 1+(0.5+0.866i)T |
good | 2 | 1+(−0.643+1.11i)T+(−1−1.73i)T2 |
| 5 | 1+(−1.95+3.39i)T+(−2.5−4.33i)T2 |
| 13 | 1+3.04T+13T2 |
| 17 | 1+(−1.98−3.44i)T+(−8.5+14.7i)T2 |
| 19 | 1+(3.79−6.57i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−2.25+3.90i)T+(−11.5−19.9i)T2 |
| 29 | 1+3.75T+29T2 |
| 31 | 1+(−3.37−5.83i)T+(−15.5+26.8i)T2 |
| 37 | 1+(0.171−0.296i)T+(−18.5−32.0i)T2 |
| 41 | 1−2.79T+41T2 |
| 43 | 1−11.1T+43T2 |
| 47 | 1+(−0.828+1.43i)T+(−23.5−40.7i)T2 |
| 53 | 1+(6.47+11.2i)T+(−26.5+45.8i)T2 |
| 59 | 1+(1.83+3.17i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−0.234+0.405i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−1.28−2.23i)T+(−33.5+58.0i)T2 |
| 71 | 1−5.00T+71T2 |
| 73 | 1+(−4.36−7.56i)T+(−36.5+63.2i)T2 |
| 79 | 1+(0.359−0.623i)T+(−39.5−68.4i)T2 |
| 83 | 1−11.5T+83T2 |
| 89 | 1+(6.17−10.6i)T+(−44.5−77.0i)T2 |
| 97 | 1+13.1T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.29130827137076573985758302154, −9.616952575274705085160702605056, −8.415071190788262680431273893222, −7.81621663085720393710227774795, −6.52569400836260047459698561555, −5.37522559812168880967676387211, −4.50770376737198839066963067656, −3.70788911283629576013094729562, −2.18272001752226645472511829522, −1.14846418186909967931224067904,
2.19891043181301778298131367874, 2.84509937878824010384602672624, 4.65155197149474738079474822359, 5.62051547410178261216929974668, 6.20520920536163684674553283140, 7.10153634117146000614316306224, 7.60289699352125996460944707735, 9.288811842874564832116273688616, 9.734181058138933444048946276068, 10.82751253670234292246231024817