L(s) = 1 | + (0.734 + 0.533i)2-s + (−0.0542 − 0.166i)4-s + (0.951 − 0.309i)7-s + (0.329 − 1.01i)8-s + (−0.987 − 0.156i)11-s + (0.863 + 0.280i)14-s + (0.642 − 0.466i)16-s + (−0.642 − 0.642i)22-s + 1.78i·23-s + (−0.309 + 0.951i)25-s + (−0.103 − 0.142i)28-s + (0.0966 + 0.297i)29-s − 0.346·32-s + (−0.587 − 1.80i)37-s + 1.61i·43-s + (0.0274 + 0.173i)44-s + ⋯ |
L(s) = 1 | + (0.734 + 0.533i)2-s + (−0.0542 − 0.166i)4-s + (0.951 − 0.309i)7-s + (0.329 − 1.01i)8-s + (−0.987 − 0.156i)11-s + (0.863 + 0.280i)14-s + (0.642 − 0.466i)16-s + (−0.642 − 0.642i)22-s + 1.78i·23-s + (−0.309 + 0.951i)25-s + (−0.103 − 0.142i)28-s + (0.0966 + 0.297i)29-s − 0.346·32-s + (−0.587 − 1.80i)37-s + 1.61i·43-s + (0.0274 + 0.173i)44-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)(0.997−0.0746i)Λ(1−s)
Λ(s)=(=(693s/2ΓC(s)L(s)(0.997−0.0746i)Λ(1−s)
Degree: |
2 |
Conductor: |
693
= 32⋅7⋅11
|
Sign: |
0.997−0.0746i
|
Analytic conductor: |
0.345852 |
Root analytic conductor: |
0.588091 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ693(62,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 693, ( :0), 0.997−0.0746i)
|
Particular Values
L(21) |
≈ |
1.369966531 |
L(21) |
≈ |
1.369966531 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−0.951+0.309i)T |
| 11 | 1+(0.987+0.156i)T |
good | 2 | 1+(−0.734−0.533i)T+(0.309+0.951i)T2 |
| 5 | 1+(0.309−0.951i)T2 |
| 13 | 1+(0.309+0.951i)T2 |
| 17 | 1+(−0.309+0.951i)T2 |
| 19 | 1+(−0.809−0.587i)T2 |
| 23 | 1−1.78iT−T2 |
| 29 | 1+(−0.0966−0.297i)T+(−0.809+0.587i)T2 |
| 31 | 1+(−0.309−0.951i)T2 |
| 37 | 1+(0.587+1.80i)T+(−0.809+0.587i)T2 |
| 41 | 1+(0.809+0.587i)T2 |
| 43 | 1−1.61iT−T2 |
| 47 | 1+(−0.809−0.587i)T2 |
| 53 | 1+(0.183−0.253i)T+(−0.309−0.951i)T2 |
| 59 | 1+(−0.809+0.587i)T2 |
| 61 | 1+(0.309−0.951i)T2 |
| 67 | 1+1.61T+T2 |
| 71 | 1+(1.16+1.59i)T+(−0.309+0.951i)T2 |
| 73 | 1+(−0.809+0.587i)T2 |
| 79 | 1+(0.690−0.951i)T+(−0.309−0.951i)T2 |
| 83 | 1+(−0.309+0.951i)T2 |
| 89 | 1+T2 |
| 97 | 1+(−0.309−0.951i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.77254866478324440150655696932, −9.880802234945932004551327014305, −8.951383171827479867588831345357, −7.66011984492660116394288667895, −7.33206266450069660727028453804, −5.91119475130221063048095863582, −5.31822418556367670268786928249, −4.47994157932479598312737273952, −3.36715407851992918063285398973, −1.59401119483080453256658171939,
2.07150309078283174174464477932, 2.93546457510629599122432856361, 4.35470421651887605486003172613, 4.89208157100979186150687756097, 5.90320555195122580458230614250, 7.25759176749485244428223225227, 8.297957438868835182634586480974, 8.586522719768385252551770152589, 10.19853779842858046770062617680, 10.72356197103482372967016379335