L(s) = 1 | + (0.734 + 0.533i)2-s + (−0.0542 − 0.166i)4-s + (0.951 − 0.309i)7-s + (0.329 − 1.01i)8-s + (−0.987 − 0.156i)11-s + (0.863 + 0.280i)14-s + (0.642 − 0.466i)16-s + (−0.642 − 0.642i)22-s + 1.78i·23-s + (−0.309 + 0.951i)25-s + (−0.103 − 0.142i)28-s + (0.0966 + 0.297i)29-s − 0.346·32-s + (−0.587 − 1.80i)37-s + 1.61i·43-s + (0.0274 + 0.173i)44-s + ⋯ |
L(s) = 1 | + (0.734 + 0.533i)2-s + (−0.0542 − 0.166i)4-s + (0.951 − 0.309i)7-s + (0.329 − 1.01i)8-s + (−0.987 − 0.156i)11-s + (0.863 + 0.280i)14-s + (0.642 − 0.466i)16-s + (−0.642 − 0.642i)22-s + 1.78i·23-s + (−0.309 + 0.951i)25-s + (−0.103 − 0.142i)28-s + (0.0966 + 0.297i)29-s − 0.346·32-s + (−0.587 − 1.80i)37-s + 1.61i·43-s + (0.0274 + 0.173i)44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0746i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0746i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.369966531\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.369966531\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.951 + 0.309i)T \) |
| 11 | \( 1 + (0.987 + 0.156i)T \) |
good | 2 | \( 1 + (-0.734 - 0.533i)T + (0.309 + 0.951i)T^{2} \) |
| 5 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 13 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 17 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 23 | \( 1 - 1.78iT - T^{2} \) |
| 29 | \( 1 + (-0.0966 - 0.297i)T + (-0.809 + 0.587i)T^{2} \) |
| 31 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (0.587 + 1.80i)T + (-0.809 + 0.587i)T^{2} \) |
| 41 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 - 1.61iT - T^{2} \) |
| 47 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (0.183 - 0.253i)T + (-0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 67 | \( 1 + 1.61T + T^{2} \) |
| 71 | \( 1 + (1.16 + 1.59i)T + (-0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (0.690 - 0.951i)T + (-0.309 - 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.77254866478324440150655696932, −9.880802234945932004551327014305, −8.951383171827479867588831345357, −7.66011984492660116394288667895, −7.33206266450069660727028453804, −5.91119475130221063048095863582, −5.31822418556367670268786928249, −4.47994157932479598312737273952, −3.36715407851992918063285398973, −1.59401119483080453256658171939,
2.07150309078283174174464477932, 2.93546457510629599122432856361, 4.35470421651887605486003172613, 4.89208157100979186150687756097, 5.90320555195122580458230614250, 7.25759176749485244428223225227, 8.297957438868835182634586480974, 8.586522719768385252551770152589, 10.19853779842858046770062617680, 10.72356197103482372967016379335