Properties

Label 2-693-231.62-c0-0-1
Degree 22
Conductor 693693
Sign 0.402+0.915i0.402 + 0.915i
Analytic cond. 0.3458520.345852
Root an. cond. 0.5880910.588091
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.734 − 0.533i)2-s + (−0.0542 − 0.166i)4-s + (0.951 − 0.309i)7-s + (−0.329 + 1.01i)8-s + (0.987 + 0.156i)11-s + (−0.863 − 0.280i)14-s + (0.642 − 0.466i)16-s + (−0.642 − 0.642i)22-s − 1.78i·23-s + (−0.309 + 0.951i)25-s + (−0.103 − 0.142i)28-s + (−0.0966 − 0.297i)29-s + 0.346·32-s + (−0.587 − 1.80i)37-s + 1.61i·43-s + (−0.0274 − 0.173i)44-s + ⋯
L(s)  = 1  + (−0.734 − 0.533i)2-s + (−0.0542 − 0.166i)4-s + (0.951 − 0.309i)7-s + (−0.329 + 1.01i)8-s + (0.987 + 0.156i)11-s + (−0.863 − 0.280i)14-s + (0.642 − 0.466i)16-s + (−0.642 − 0.642i)22-s − 1.78i·23-s + (−0.309 + 0.951i)25-s + (−0.103 − 0.142i)28-s + (−0.0966 − 0.297i)29-s + 0.346·32-s + (−0.587 − 1.80i)37-s + 1.61i·43-s + (−0.0274 − 0.173i)44-s + ⋯

Functional equation

Λ(s)=(693s/2ΓC(s)L(s)=((0.402+0.915i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.402 + 0.915i)\, \overline{\Lambda}(1-s) \end{aligned}
Λ(s)=(693s/2ΓC(s)L(s)=((0.402+0.915i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.402 + 0.915i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 693693    =    327113^{2} \cdot 7 \cdot 11
Sign: 0.402+0.915i0.402 + 0.915i
Analytic conductor: 0.3458520.345852
Root analytic conductor: 0.5880910.588091
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ693(62,)\chi_{693} (62, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 693, ( :0), 0.402+0.915i)(2,\ 693,\ (\ :0),\ 0.402 + 0.915i)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.70618687350.7061868735
L(12)L(\frac12) \approx 0.70618687350.7061868735
L(1)L(1) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
7 1+(0.951+0.309i)T 1 + (-0.951 + 0.309i)T
11 1+(0.9870.156i)T 1 + (-0.987 - 0.156i)T
good2 1+(0.734+0.533i)T+(0.309+0.951i)T2 1 + (0.734 + 0.533i)T + (0.309 + 0.951i)T^{2}
5 1+(0.3090.951i)T2 1 + (0.309 - 0.951i)T^{2}
13 1+(0.309+0.951i)T2 1 + (0.309 + 0.951i)T^{2}
17 1+(0.309+0.951i)T2 1 + (-0.309 + 0.951i)T^{2}
19 1+(0.8090.587i)T2 1 + (-0.809 - 0.587i)T^{2}
23 1+1.78iTT2 1 + 1.78iT - T^{2}
29 1+(0.0966+0.297i)T+(0.809+0.587i)T2 1 + (0.0966 + 0.297i)T + (-0.809 + 0.587i)T^{2}
31 1+(0.3090.951i)T2 1 + (-0.309 - 0.951i)T^{2}
37 1+(0.587+1.80i)T+(0.809+0.587i)T2 1 + (0.587 + 1.80i)T + (-0.809 + 0.587i)T^{2}
41 1+(0.809+0.587i)T2 1 + (0.809 + 0.587i)T^{2}
43 11.61iTT2 1 - 1.61iT - T^{2}
47 1+(0.8090.587i)T2 1 + (-0.809 - 0.587i)T^{2}
53 1+(0.183+0.253i)T+(0.3090.951i)T2 1 + (-0.183 + 0.253i)T + (-0.309 - 0.951i)T^{2}
59 1+(0.809+0.587i)T2 1 + (-0.809 + 0.587i)T^{2}
61 1+(0.3090.951i)T2 1 + (0.309 - 0.951i)T^{2}
67 1+1.61T+T2 1 + 1.61T + T^{2}
71 1+(1.161.59i)T+(0.309+0.951i)T2 1 + (-1.16 - 1.59i)T + (-0.309 + 0.951i)T^{2}
73 1+(0.809+0.587i)T2 1 + (-0.809 + 0.587i)T^{2}
79 1+(0.6900.951i)T+(0.3090.951i)T2 1 + (0.690 - 0.951i)T + (-0.309 - 0.951i)T^{2}
83 1+(0.309+0.951i)T2 1 + (-0.309 + 0.951i)T^{2}
89 1+T2 1 + T^{2}
97 1+(0.3090.951i)T2 1 + (-0.309 - 0.951i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.57349426378619545675900608310, −9.653174689899536106897026409875, −8.905522486581032259786156313159, −8.196570808172035148461442265304, −7.18288744374796686724519578318, −6.04606971751183770991396506099, −4.98461130327721379562703744967, −4.00680523639470954762419679314, −2.35405747009839158525114193277, −1.23470822574348972553277143840, 1.56068324131744474829727750197, 3.33878064382717655120915340626, 4.38839005943541075756168089498, 5.61202361112755444232928647323, 6.64546497063641141844514118203, 7.50340724305552595658435391941, 8.284580128500657370635364216275, 8.949765729037654034744893271477, 9.691169460784368002436702431350, 10.69672024028364157074166705647

Graph of the ZZ-function along the critical line