L(s) = 1 | + (−0.610 + 1.87i)2-s + (−2.34 − 1.70i)4-s + (0.587 − 0.809i)7-s + (3.03 − 2.20i)8-s + (0.891 + 0.453i)11-s + (1.16 + 1.59i)14-s + (1.39 + 4.29i)16-s + (−1.39 + 1.39i)22-s + 0.312i·23-s + (0.809 − 0.587i)25-s + (−2.76 + 0.896i)28-s + (−0.734 − 0.533i)29-s − 5.17·32-s + (0.951 + 0.690i)37-s + 0.618i·43-s + (−1.31 − 2.58i)44-s + ⋯ |
L(s) = 1 | + (−0.610 + 1.87i)2-s + (−2.34 − 1.70i)4-s + (0.587 − 0.809i)7-s + (3.03 − 2.20i)8-s + (0.891 + 0.453i)11-s + (1.16 + 1.59i)14-s + (1.39 + 4.29i)16-s + (−1.39 + 1.39i)22-s + 0.312i·23-s + (0.809 − 0.587i)25-s + (−2.76 + 0.896i)28-s + (−0.734 − 0.533i)29-s − 5.17·32-s + (0.951 + 0.690i)37-s + 0.618i·43-s + (−1.31 − 2.58i)44-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)(−0.147−0.989i)Λ(1−s)
Λ(s)=(=(693s/2ΓC(s)L(s)(−0.147−0.989i)Λ(1−s)
Degree: |
2 |
Conductor: |
693
= 32⋅7⋅11
|
Sign: |
−0.147−0.989i
|
Analytic conductor: |
0.345852 |
Root analytic conductor: |
0.588091 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ693(629,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 693, ( :0), −0.147−0.989i)
|
Particular Values
L(21) |
≈ |
0.6772496911 |
L(21) |
≈ |
0.6772496911 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−0.587+0.809i)T |
| 11 | 1+(−0.891−0.453i)T |
good | 2 | 1+(0.610−1.87i)T+(−0.809−0.587i)T2 |
| 5 | 1+(−0.809+0.587i)T2 |
| 13 | 1+(−0.809−0.587i)T2 |
| 17 | 1+(0.809−0.587i)T2 |
| 19 | 1+(0.309−0.951i)T2 |
| 23 | 1−0.312iT−T2 |
| 29 | 1+(0.734+0.533i)T+(0.309+0.951i)T2 |
| 31 | 1+(0.809+0.587i)T2 |
| 37 | 1+(−0.951−0.690i)T+(0.309+0.951i)T2 |
| 41 | 1+(−0.309+0.951i)T2 |
| 43 | 1−0.618iT−T2 |
| 47 | 1+(0.309−0.951i)T2 |
| 53 | 1+(−0.863−0.280i)T+(0.809+0.587i)T2 |
| 59 | 1+(0.309+0.951i)T2 |
| 61 | 1+(−0.809+0.587i)T2 |
| 67 | 1−0.618T+T2 |
| 71 | 1+(1.69−0.550i)T+(0.809−0.587i)T2 |
| 73 | 1+(0.309+0.951i)T2 |
| 79 | 1+(1.80+0.587i)T+(0.809+0.587i)T2 |
| 83 | 1+(0.809−0.587i)T2 |
| 89 | 1+T2 |
| 97 | 1+(0.809+0.587i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.45936253091187951372935840207, −9.757995265342043893447273571597, −8.948127302568418380120890984609, −8.122350830311265845999788676471, −7.37085698485431666545576085081, −6.71816112347305667068705749878, −5.82375140160923125137920304210, −4.71336327498026176359474484415, −4.07489034985111058597120614432, −1.26000879937970853575463934527,
1.35212972536604054835604403879, 2.47461377835267084633176270288, 3.53562106782954021963187066022, 4.53278487157347347989921234145, 5.60046733470961286680597776639, 7.31956426218587169612644952584, 8.436389323149689825361390184033, 8.922204059075404120814799321401, 9.592240195721238153529112208441, 10.64726863279264593003175835788