L(s) = 1 | + (−0.610 + 1.87i)2-s + (−2.34 − 1.70i)4-s + (0.587 − 0.809i)7-s + (3.03 − 2.20i)8-s + (0.891 + 0.453i)11-s + (1.16 + 1.59i)14-s + (1.39 + 4.29i)16-s + (−1.39 + 1.39i)22-s + 0.312i·23-s + (0.809 − 0.587i)25-s + (−2.76 + 0.896i)28-s + (−0.734 − 0.533i)29-s − 5.17·32-s + (0.951 + 0.690i)37-s + 0.618i·43-s + (−1.31 − 2.58i)44-s + ⋯ |
L(s) = 1 | + (−0.610 + 1.87i)2-s + (−2.34 − 1.70i)4-s + (0.587 − 0.809i)7-s + (3.03 − 2.20i)8-s + (0.891 + 0.453i)11-s + (1.16 + 1.59i)14-s + (1.39 + 4.29i)16-s + (−1.39 + 1.39i)22-s + 0.312i·23-s + (0.809 − 0.587i)25-s + (−2.76 + 0.896i)28-s + (−0.734 − 0.533i)29-s − 5.17·32-s + (0.951 + 0.690i)37-s + 0.618i·43-s + (−1.31 − 2.58i)44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.147 - 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.147 - 0.989i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6772496911\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6772496911\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.587 + 0.809i)T \) |
| 11 | \( 1 + (-0.891 - 0.453i)T \) |
good | 2 | \( 1 + (0.610 - 1.87i)T + (-0.809 - 0.587i)T^{2} \) |
| 5 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 13 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 - 0.312iT - T^{2} \) |
| 29 | \( 1 + (0.734 + 0.533i)T + (0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 37 | \( 1 + (-0.951 - 0.690i)T + (0.309 + 0.951i)T^{2} \) |
| 41 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 - 0.618iT - T^{2} \) |
| 47 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (-0.863 - 0.280i)T + (0.809 + 0.587i)T^{2} \) |
| 59 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 - 0.618T + T^{2} \) |
| 71 | \( 1 + (1.69 - 0.550i)T + (0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 79 | \( 1 + (1.80 + 0.587i)T + (0.809 + 0.587i)T^{2} \) |
| 83 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.809 + 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.45936253091187951372935840207, −9.757995265342043893447273571597, −8.948127302568418380120890984609, −8.122350830311265845999788676471, −7.37085698485431666545576085081, −6.71816112347305667068705749878, −5.82375140160923125137920304210, −4.71336327498026176359474484415, −4.07489034985111058597120614432, −1.26000879937970853575463934527,
1.35212972536604054835604403879, 2.47461377835267084633176270288, 3.53562106782954021963187066022, 4.53278487157347347989921234145, 5.60046733470961286680597776639, 7.31956426218587169612644952584, 8.436389323149689825361390184033, 8.922204059075404120814799321401, 9.592240195721238153529112208441, 10.64726863279264593003175835788