| L(s) = 1 | + (0.5 − 0.363i)2-s + (−0.5 + 1.53i)4-s + (−1.30 − 0.951i)5-s + (−0.309 + 0.951i)7-s + (0.690 + 2.12i)8-s − 10-s + (−1.69 − 2.85i)11-s + (−3.42 + 2.48i)13-s + (0.190 + 0.587i)14-s + (−1.49 − 1.08i)16-s + (−2.80 − 2.04i)17-s + (2 + 6.15i)19-s + (2.11 − 1.53i)20-s + (−1.88 − 0.812i)22-s − 5.70·23-s + ⋯ |
| L(s) = 1 | + (0.353 − 0.256i)2-s + (−0.250 + 0.769i)4-s + (−0.585 − 0.425i)5-s + (−0.116 + 0.359i)7-s + (0.244 + 0.751i)8-s − 0.316·10-s + (−0.509 − 0.860i)11-s + (−0.950 + 0.690i)13-s + (0.0510 + 0.157i)14-s + (−0.374 − 0.272i)16-s + (−0.681 − 0.494i)17-s + (0.458 + 1.41i)19-s + (0.473 − 0.344i)20-s + (−0.401 − 0.173i)22-s − 1.19·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.908 - 0.417i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.908 - 0.417i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.0855030 + 0.390379i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.0855030 + 0.390379i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 7 | \( 1 + (0.309 - 0.951i)T \) |
| 11 | \( 1 + (1.69 + 2.85i)T \) |
| good | 2 | \( 1 + (-0.5 + 0.363i)T + (0.618 - 1.90i)T^{2} \) |
| 5 | \( 1 + (1.30 + 0.951i)T + (1.54 + 4.75i)T^{2} \) |
| 13 | \( 1 + (3.42 - 2.48i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (2.80 + 2.04i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-2 - 6.15i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 5.70T + 23T^{2} \) |
| 29 | \( 1 + (-0.0729 + 0.224i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (2.42 - 1.76i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-1.85 + 5.70i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-3.04 - 9.37i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 11.4T + 43T^{2} \) |
| 47 | \( 1 + (-1.59 - 4.89i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (10.1 - 7.38i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-1.42 + 4.39i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-6.42 - 4.66i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 - 13.2T + 67T^{2} \) |
| 71 | \( 1 + (3.66 + 2.66i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-2.28 + 7.02i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-4.92 + 3.57i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-6.85 - 4.97i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 1.32T + 89T^{2} \) |
| 97 | \( 1 + (-4.28 + 3.11i)T + (29.9 - 92.2i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.14494909539248477881214212928, −9.900458533636488753103580390146, −9.032217964177226318335183594165, −8.084594686000080790456746832899, −7.70668899945549479705319837961, −6.33379960139674838847760322056, −5.17011416139620924691766659071, −4.31532443791230400248343365722, −3.37941293515540962600927196204, −2.22781243826551344460616110327,
0.17561500791405409368380524516, 2.18081934996258749744625965102, 3.65119795049187197927746645661, 4.69642452675996519598924819967, 5.39027684499238006843559045330, 6.69199419228807433639188765091, 7.23217141924790180938536399097, 8.190144885847866294919088542680, 9.509059901026695474734414769618, 10.06210261200593961687725364384