| L(s) = 1 | + (2.11 − 1.53i)2-s + (1.5 − 4.61i)4-s + (1.30 + 0.951i)5-s + (0.309 − 0.951i)7-s + (−2.30 − 7.10i)8-s + 4.23·10-s + (2.54 − 2.12i)11-s + (−4.42 + 3.21i)13-s + (−0.809 − 2.48i)14-s + (−7.97 − 5.79i)16-s + (−2.42 − 1.76i)17-s + (1.23 + 3.80i)19-s + (6.35 − 4.61i)20-s + (2.11 − 8.42i)22-s + 7.23·23-s + ⋯ |
| L(s) = 1 | + (1.49 − 1.08i)2-s + (0.750 − 2.30i)4-s + (0.585 + 0.425i)5-s + (0.116 − 0.359i)7-s + (−0.816 − 2.51i)8-s + 1.33·10-s + (0.767 − 0.641i)11-s + (−1.22 + 0.892i)13-s + (−0.216 − 0.665i)14-s + (−1.99 − 1.44i)16-s + (−0.588 − 0.427i)17-s + (0.283 + 0.872i)19-s + (1.42 − 1.03i)20-s + (0.451 − 1.79i)22-s + 1.50·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.266 + 0.963i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.266 + 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.22258 - 2.92181i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.22258 - 2.92181i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.309 + 0.951i)T \) |
| 11 | \( 1 + (-2.54 + 2.12i)T \) |
| good | 2 | \( 1 + (-2.11 + 1.53i)T + (0.618 - 1.90i)T^{2} \) |
| 5 | \( 1 + (-1.30 - 0.951i)T + (1.54 + 4.75i)T^{2} \) |
| 13 | \( 1 + (4.42 - 3.21i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (2.42 + 1.76i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-1.23 - 3.80i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 7.23T + 23T^{2} \) |
| 29 | \( 1 + (0.927 - 2.85i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (0.190 - 0.138i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (2.61 - 8.05i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (-0.954 - 2.93i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 9T + 43T^{2} \) |
| 47 | \( 1 + (3.11 + 9.59i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-3.30 + 2.40i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (3.89 - 12.0i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-5.42 - 3.94i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 3.70T + 67T^{2} \) |
| 71 | \( 1 + (-9.89 - 7.19i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (1.19 - 3.66i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (5.54 - 4.02i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-2.38 - 1.73i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 2.67T + 89T^{2} \) |
| 97 | \( 1 + (-13.2 + 9.64i)T + (29.9 - 92.2i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.32113906382326552568638159163, −9.879911311459249896199147254257, −8.811132243034520649045510365134, −7.01510017822673398291664852410, −6.48932355412077503436307665251, −5.35041822008848363493571201286, −4.59028950169664960916953918769, −3.54322539896591095158460373465, −2.57593912884776868276648180604, −1.45405364077196737883280359672,
2.24734104049669135045988994480, 3.43123611625457520332289214893, 4.77863916114573612371415108382, 5.11089861938665868970943022075, 6.13027513094980032805844073879, 7.00881250528793315637423966242, 7.68168320545103570469873250105, 8.860694851490151230900202399845, 9.591973204094583376077052283146, 11.02916629560942244689768205942