| L(s) = 1 | + (−1.80 + 1.31i)2-s + (0.927 − 2.85i)4-s + (1.30 + 0.951i)5-s + (0.309 − 0.951i)7-s + (0.690 + 2.12i)8-s − 3.61·10-s + (−0.809 − 3.21i)11-s + (1 − 0.726i)13-s + (0.690 + 2.12i)14-s + (0.809 + 0.587i)16-s + (−1.5 − 1.08i)17-s + (−1.19 − 3.66i)19-s + (3.92 − 2.85i)20-s + (5.69 + 4.75i)22-s − 6.61·23-s + ⋯ |
| L(s) = 1 | + (−1.27 + 0.929i)2-s + (0.463 − 1.42i)4-s + (0.585 + 0.425i)5-s + (0.116 − 0.359i)7-s + (0.244 + 0.751i)8-s − 1.14·10-s + (−0.243 − 0.969i)11-s + (0.277 − 0.201i)13-s + (0.184 + 0.568i)14-s + (0.202 + 0.146i)16-s + (−0.363 − 0.264i)17-s + (−0.273 − 0.840i)19-s + (0.878 − 0.637i)20-s + (1.21 + 1.01i)22-s − 1.37·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.751 + 0.659i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.751 + 0.659i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.550199 - 0.207045i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.550199 - 0.207045i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 7 | \( 1 + (-0.309 + 0.951i)T \) |
| 11 | \( 1 + (0.809 + 3.21i)T \) |
| good | 2 | \( 1 + (1.80 - 1.31i)T + (0.618 - 1.90i)T^{2} \) |
| 5 | \( 1 + (-1.30 - 0.951i)T + (1.54 + 4.75i)T^{2} \) |
| 13 | \( 1 + (-1 + 0.726i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (1.5 + 1.08i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (1.19 + 3.66i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 + 6.61T + 23T^{2} \) |
| 29 | \( 1 + (-1.85 + 5.70i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (6.54 - 4.75i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-0.736 + 2.26i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (2.97 + 9.14i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 3.70T + 43T^{2} \) |
| 47 | \( 1 + (-1.38 - 4.25i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-9.09 + 6.60i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.381 + 1.17i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 67T^{2} \) |
| 71 | \( 1 + (-10.4 - 7.60i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-0.0901 + 0.277i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-8.09 + 5.87i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-6.09 - 4.42i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 3.38T + 89T^{2} \) |
| 97 | \( 1 + (-4.85 + 3.52i)T + (29.9 - 92.2i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.28663746334746401883482577079, −9.338866733635154067186156080633, −8.568725531926419280914353870452, −7.87414515323457116536314192254, −6.90174671999689908626027482301, −6.23066863500729309798997485019, −5.39207939116513542132151188738, −3.76784620495717196351042213406, −2.18883715489788826614869612617, −0.46585796852888750620517922403,
1.57314477923992128282066182066, 2.23324114731280969912239438286, 3.73476078243174756628525878601, 5.10506057260647229504080679984, 6.16868064073220007114078794748, 7.46806371381200743035634387499, 8.288000660083476111268661260961, 9.036253646577604834494295122452, 9.773876208856025714074923380303, 10.30570773385873398455901927309