L(s) = 1 | − 1.22·2-s − 6.50·4-s + 11.7·5-s − 7·7-s + 17.7·8-s − 14.3·10-s + 11·11-s − 25.5·13-s + 8.56·14-s + 30.3·16-s − 16.3·17-s − 126.·19-s − 76.1·20-s − 13.4·22-s + 94.6·23-s + 12.2·25-s + 31.2·26-s + 45.5·28-s + 160.·29-s − 12.1·31-s − 179.·32-s + 19.9·34-s − 82.0·35-s + 436.·37-s + 154.·38-s + 207.·40-s − 264.·41-s + ⋯ |
L(s) = 1 | − 0.432·2-s − 0.812·4-s + 1.04·5-s − 0.377·7-s + 0.784·8-s − 0.453·10-s + 0.301·11-s − 0.545·13-s + 0.163·14-s + 0.473·16-s − 0.232·17-s − 1.52·19-s − 0.851·20-s − 0.130·22-s + 0.858·23-s + 0.0979·25-s + 0.235·26-s + 0.307·28-s + 1.02·29-s − 0.0701·31-s − 0.989·32-s + 0.100·34-s − 0.396·35-s + 1.94·37-s + 0.658·38-s + 0.821·40-s − 1.00·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(693s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+7T |
| 11 | 1−11T |
good | 2 | 1+1.22T+8T2 |
| 5 | 1−11.7T+125T2 |
| 13 | 1+25.5T+2.19e3T2 |
| 17 | 1+16.3T+4.91e3T2 |
| 19 | 1+126.T+6.85e3T2 |
| 23 | 1−94.6T+1.21e4T2 |
| 29 | 1−160.T+2.43e4T2 |
| 31 | 1+12.1T+2.97e4T2 |
| 37 | 1−436.T+5.06e4T2 |
| 41 | 1+264.T+6.89e4T2 |
| 43 | 1+171.T+7.95e4T2 |
| 47 | 1+535.T+1.03e5T2 |
| 53 | 1−514.T+1.48e5T2 |
| 59 | 1+607.T+2.05e5T2 |
| 61 | 1−47.8T+2.26e5T2 |
| 67 | 1−1.05e3T+3.00e5T2 |
| 71 | 1+783.T+3.57e5T2 |
| 73 | 1+1.10e3T+3.89e5T2 |
| 79 | 1+194.T+4.93e5T2 |
| 83 | 1+489.T+5.71e5T2 |
| 89 | 1+466.T+7.04e5T2 |
| 97 | 1+429.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.710544162767554588522755751896, −8.878194449188127204568215175168, −8.182434701725897214312592908330, −6.91397090733053461628800919437, −6.10929774538131927725444006893, −5.03141479785759324148363275160, −4.17169640590165057727629389742, −2.69563789644643788545369292425, −1.43396746574585920656150309750, 0,
1.43396746574585920656150309750, 2.69563789644643788545369292425, 4.17169640590165057727629389742, 5.03141479785759324148363275160, 6.10929774538131927725444006893, 6.91397090733053461628800919437, 8.182434701725897214312592908330, 8.878194449188127204568215175168, 9.710544162767554588522755751896