Properties

Label 2-693-1.1-c3-0-49
Degree $2$
Conductor $693$
Sign $-1$
Analytic cond. $40.8883$
Root an. cond. $6.39439$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.561·2-s − 7.68·4-s − 6.68·5-s + 7·7-s − 8.80·8-s − 3.75·10-s + 11·11-s + 14.3·13-s + 3.93·14-s + 56.5·16-s + 47.7·17-s + 11.9·19-s + 51.3·20-s + 6.17·22-s + 44.4·23-s − 80.3·25-s + 8.03·26-s − 53.7·28-s + 139.·29-s − 208.·31-s + 102.·32-s + 26.8·34-s − 46.7·35-s − 253.·37-s + 6.69·38-s + 58.8·40-s + 156.·41-s + ⋯
L(s)  = 1  + 0.198·2-s − 0.960·4-s − 0.597·5-s + 0.377·7-s − 0.389·8-s − 0.118·10-s + 0.301·11-s + 0.305·13-s + 0.0750·14-s + 0.883·16-s + 0.681·17-s + 0.143·19-s + 0.574·20-s + 0.0598·22-s + 0.403·23-s − 0.642·25-s + 0.0605·26-s − 0.363·28-s + 0.893·29-s − 1.20·31-s + 0.564·32-s + 0.135·34-s − 0.225·35-s − 1.12·37-s + 0.0285·38-s + 0.232·40-s + 0.595·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(40.8883\)
Root analytic conductor: \(6.39439\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 693,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 - 7T \)
11 \( 1 - 11T \)
good2 \( 1 - 0.561T + 8T^{2} \)
5 \( 1 + 6.68T + 125T^{2} \)
13 \( 1 - 14.3T + 2.19e3T^{2} \)
17 \( 1 - 47.7T + 4.91e3T^{2} \)
19 \( 1 - 11.9T + 6.85e3T^{2} \)
23 \( 1 - 44.4T + 1.21e4T^{2} \)
29 \( 1 - 139.T + 2.43e4T^{2} \)
31 \( 1 + 208.T + 2.97e4T^{2} \)
37 \( 1 + 253.T + 5.06e4T^{2} \)
41 \( 1 - 156.T + 6.89e4T^{2} \)
43 \( 1 + 263.T + 7.95e4T^{2} \)
47 \( 1 + 386.T + 1.03e5T^{2} \)
53 \( 1 - 36.5T + 1.48e5T^{2} \)
59 \( 1 - 114.T + 2.05e5T^{2} \)
61 \( 1 + 53.0T + 2.26e5T^{2} \)
67 \( 1 - 132.T + 3.00e5T^{2} \)
71 \( 1 + 583.T + 3.57e5T^{2} \)
73 \( 1 + 817.T + 3.89e5T^{2} \)
79 \( 1 + 369.T + 4.93e5T^{2} \)
83 \( 1 - 69.1T + 5.71e5T^{2} \)
89 \( 1 + 467.T + 7.04e5T^{2} \)
97 \( 1 + 1.17e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.579425032450930458840847296578, −8.685274798969743728111074218185, −8.053926276143849475536081811005, −7.09458888031229806519488101139, −5.82932443745915256131683548196, −4.97061842491356212840182660399, −4.03273550061096967927586777432, −3.21851181291526248165313877429, −1.37622371514551312910643013372, 0, 1.37622371514551312910643013372, 3.21851181291526248165313877429, 4.03273550061096967927586777432, 4.97061842491356212840182660399, 5.82932443745915256131683548196, 7.09458888031229806519488101139, 8.053926276143849475536081811005, 8.685274798969743728111074218185, 9.579425032450930458840847296578

Graph of the $Z$-function along the critical line