L(s) = 1 | + 0.561·2-s − 7.68·4-s − 6.68·5-s + 7·7-s − 8.80·8-s − 3.75·10-s + 11·11-s + 14.3·13-s + 3.93·14-s + 56.5·16-s + 47.7·17-s + 11.9·19-s + 51.3·20-s + 6.17·22-s + 44.4·23-s − 80.3·25-s + 8.03·26-s − 53.7·28-s + 139.·29-s − 208.·31-s + 102.·32-s + 26.8·34-s − 46.7·35-s − 253.·37-s + 6.69·38-s + 58.8·40-s + 156.·41-s + ⋯ |
L(s) = 1 | + 0.198·2-s − 0.960·4-s − 0.597·5-s + 0.377·7-s − 0.389·8-s − 0.118·10-s + 0.301·11-s + 0.305·13-s + 0.0750·14-s + 0.883·16-s + 0.681·17-s + 0.143·19-s + 0.574·20-s + 0.0598·22-s + 0.403·23-s − 0.642·25-s + 0.0605·26-s − 0.363·28-s + 0.893·29-s − 1.20·31-s + 0.564·32-s + 0.135·34-s − 0.225·35-s − 1.12·37-s + 0.0285·38-s + 0.232·40-s + 0.595·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(693s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1−7T |
| 11 | 1−11T |
good | 2 | 1−0.561T+8T2 |
| 5 | 1+6.68T+125T2 |
| 13 | 1−14.3T+2.19e3T2 |
| 17 | 1−47.7T+4.91e3T2 |
| 19 | 1−11.9T+6.85e3T2 |
| 23 | 1−44.4T+1.21e4T2 |
| 29 | 1−139.T+2.43e4T2 |
| 31 | 1+208.T+2.97e4T2 |
| 37 | 1+253.T+5.06e4T2 |
| 41 | 1−156.T+6.89e4T2 |
| 43 | 1+263.T+7.95e4T2 |
| 47 | 1+386.T+1.03e5T2 |
| 53 | 1−36.5T+1.48e5T2 |
| 59 | 1−114.T+2.05e5T2 |
| 61 | 1+53.0T+2.26e5T2 |
| 67 | 1−132.T+3.00e5T2 |
| 71 | 1+583.T+3.57e5T2 |
| 73 | 1+817.T+3.89e5T2 |
| 79 | 1+369.T+4.93e5T2 |
| 83 | 1−69.1T+5.71e5T2 |
| 89 | 1+467.T+7.04e5T2 |
| 97 | 1+1.17e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.579425032450930458840847296578, −8.685274798969743728111074218185, −8.053926276143849475536081811005, −7.09458888031229806519488101139, −5.82932443745915256131683548196, −4.97061842491356212840182660399, −4.03273550061096967927586777432, −3.21851181291526248165313877429, −1.37622371514551312910643013372, 0,
1.37622371514551312910643013372, 3.21851181291526248165313877429, 4.03273550061096967927586777432, 4.97061842491356212840182660399, 5.82932443745915256131683548196, 7.09458888031229806519488101139, 8.053926276143849475536081811005, 8.685274798969743728111074218185, 9.579425032450930458840847296578