L(s) = 1 | + 4.79·2-s + 14.9·4-s + 6.25·5-s + 7·7-s + 33.4·8-s + 29.9·10-s − 11·11-s − 35.7·13-s + 33.5·14-s + 40.4·16-s + 133.·17-s + 161.·19-s + 93.6·20-s − 52.7·22-s + 66.2·23-s − 85.8·25-s − 171.·26-s + 104.·28-s + 208.·29-s − 39.3·31-s − 73.5·32-s + 637.·34-s + 43.7·35-s + 197.·37-s + 774.·38-s + 209.·40-s − 434.·41-s + ⋯ |
L(s) = 1 | + 1.69·2-s + 1.87·4-s + 0.559·5-s + 0.377·7-s + 1.47·8-s + 0.947·10-s − 0.301·11-s − 0.763·13-s + 0.640·14-s + 0.632·16-s + 1.89·17-s + 1.95·19-s + 1.04·20-s − 0.510·22-s + 0.600·23-s − 0.687·25-s − 1.29·26-s + 0.707·28-s + 1.33·29-s − 0.228·31-s − 0.406·32-s + 3.21·34-s + 0.211·35-s + 0.877·37-s + 3.30·38-s + 0.826·40-s − 1.65·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(693s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
6.784038514 |
L(21) |
≈ |
6.784038514 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1−7T |
| 11 | 1+11T |
good | 2 | 1−4.79T+8T2 |
| 5 | 1−6.25T+125T2 |
| 13 | 1+35.7T+2.19e3T2 |
| 17 | 1−133.T+4.91e3T2 |
| 19 | 1−161.T+6.85e3T2 |
| 23 | 1−66.2T+1.21e4T2 |
| 29 | 1−208.T+2.43e4T2 |
| 31 | 1+39.3T+2.97e4T2 |
| 37 | 1−197.T+5.06e4T2 |
| 41 | 1+434.T+6.89e4T2 |
| 43 | 1−375.T+7.95e4T2 |
| 47 | 1+503.T+1.03e5T2 |
| 53 | 1+44.8T+1.48e5T2 |
| 59 | 1+582.T+2.05e5T2 |
| 61 | 1−73.2T+2.26e5T2 |
| 67 | 1+928.T+3.00e5T2 |
| 71 | 1−755.T+3.57e5T2 |
| 73 | 1−277.T+3.89e5T2 |
| 79 | 1−651.T+4.93e5T2 |
| 83 | 1+282.T+5.71e5T2 |
| 89 | 1+1.04e3T+7.04e5T2 |
| 97 | 1−1.11e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.14257513538614044281169621044, −9.509688724506428169826359248300, −7.927201322560204273781636084615, −7.25382942322055545933398159569, −6.10846308542284062292702327809, −5.31179857460304737958220479914, −4.84052083323305641998157362567, −3.44277687262179239301347908663, −2.73220088095683067244704688146, −1.34660957046689371538856528282,
1.34660957046689371538856528282, 2.73220088095683067244704688146, 3.44277687262179239301347908663, 4.84052083323305641998157362567, 5.31179857460304737958220479914, 6.10846308542284062292702327809, 7.25382942322055545933398159569, 7.927201322560204273781636084615, 9.509688724506428169826359248300, 10.14257513538614044281169621044