Properties

Label 2-693-1.1-c3-0-48
Degree $2$
Conductor $693$
Sign $1$
Analytic cond. $40.8883$
Root an. cond. $6.39439$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.79·2-s + 14.9·4-s + 6.25·5-s + 7·7-s + 33.4·8-s + 29.9·10-s − 11·11-s − 35.7·13-s + 33.5·14-s + 40.4·16-s + 133.·17-s + 161.·19-s + 93.6·20-s − 52.7·22-s + 66.2·23-s − 85.8·25-s − 171.·26-s + 104.·28-s + 208.·29-s − 39.3·31-s − 73.5·32-s + 637.·34-s + 43.7·35-s + 197.·37-s + 774.·38-s + 209.·40-s − 434.·41-s + ⋯
L(s)  = 1  + 1.69·2-s + 1.87·4-s + 0.559·5-s + 0.377·7-s + 1.47·8-s + 0.947·10-s − 0.301·11-s − 0.763·13-s + 0.640·14-s + 0.632·16-s + 1.89·17-s + 1.95·19-s + 1.04·20-s − 0.510·22-s + 0.600·23-s − 0.687·25-s − 1.29·26-s + 0.707·28-s + 1.33·29-s − 0.228·31-s − 0.406·32-s + 3.21·34-s + 0.211·35-s + 0.877·37-s + 3.30·38-s + 0.826·40-s − 1.65·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(40.8883\)
Root analytic conductor: \(6.39439\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 693,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(6.784038514\)
\(L(\frac12)\) \(\approx\) \(6.784038514\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 - 7T \)
11 \( 1 + 11T \)
good2 \( 1 - 4.79T + 8T^{2} \)
5 \( 1 - 6.25T + 125T^{2} \)
13 \( 1 + 35.7T + 2.19e3T^{2} \)
17 \( 1 - 133.T + 4.91e3T^{2} \)
19 \( 1 - 161.T + 6.85e3T^{2} \)
23 \( 1 - 66.2T + 1.21e4T^{2} \)
29 \( 1 - 208.T + 2.43e4T^{2} \)
31 \( 1 + 39.3T + 2.97e4T^{2} \)
37 \( 1 - 197.T + 5.06e4T^{2} \)
41 \( 1 + 434.T + 6.89e4T^{2} \)
43 \( 1 - 375.T + 7.95e4T^{2} \)
47 \( 1 + 503.T + 1.03e5T^{2} \)
53 \( 1 + 44.8T + 1.48e5T^{2} \)
59 \( 1 + 582.T + 2.05e5T^{2} \)
61 \( 1 - 73.2T + 2.26e5T^{2} \)
67 \( 1 + 928.T + 3.00e5T^{2} \)
71 \( 1 - 755.T + 3.57e5T^{2} \)
73 \( 1 - 277.T + 3.89e5T^{2} \)
79 \( 1 - 651.T + 4.93e5T^{2} \)
83 \( 1 + 282.T + 5.71e5T^{2} \)
89 \( 1 + 1.04e3T + 7.04e5T^{2} \)
97 \( 1 - 1.11e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.14257513538614044281169621044, −9.509688724506428169826359248300, −7.927201322560204273781636084615, −7.25382942322055545933398159569, −6.10846308542284062292702327809, −5.31179857460304737958220479914, −4.84052083323305641998157362567, −3.44277687262179239301347908663, −2.73220088095683067244704688146, −1.34660957046689371538856528282, 1.34660957046689371538856528282, 2.73220088095683067244704688146, 3.44277687262179239301347908663, 4.84052083323305641998157362567, 5.31179857460304737958220479914, 6.10846308542284062292702327809, 7.25382942322055545933398159569, 7.927201322560204273781636084615, 9.509688724506428169826359248300, 10.14257513538614044281169621044

Graph of the $Z$-function along the critical line