L(s) = 1 | − 0.948·2-s − 7.10·4-s + 5.36·5-s − 7·7-s + 14.3·8-s − 5.09·10-s − 11·11-s − 42.9·13-s + 6.64·14-s + 43.2·16-s + 60.8·17-s + 140.·19-s − 38.1·20-s + 10.4·22-s + 91.3·23-s − 96.1·25-s + 40.7·26-s + 49.7·28-s − 260.·29-s − 259.·31-s − 155.·32-s − 57.7·34-s − 37.5·35-s + 359.·37-s − 133.·38-s + 76.8·40-s + 320.·41-s + ⋯ |
L(s) = 1 | − 0.335·2-s − 0.887·4-s + 0.480·5-s − 0.377·7-s + 0.633·8-s − 0.161·10-s − 0.301·11-s − 0.916·13-s + 0.126·14-s + 0.675·16-s + 0.868·17-s + 1.69·19-s − 0.426·20-s + 0.101·22-s + 0.828·23-s − 0.769·25-s + 0.307·26-s + 0.335·28-s − 1.67·29-s − 1.50·31-s − 0.859·32-s − 0.291·34-s − 0.181·35-s + 1.59·37-s − 0.569·38-s + 0.303·40-s + 1.21·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(693s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+7T |
| 11 | 1+11T |
good | 2 | 1+0.948T+8T2 |
| 5 | 1−5.36T+125T2 |
| 13 | 1+42.9T+2.19e3T2 |
| 17 | 1−60.8T+4.91e3T2 |
| 19 | 1−140.T+6.85e3T2 |
| 23 | 1−91.3T+1.21e4T2 |
| 29 | 1+260.T+2.43e4T2 |
| 31 | 1+259.T+2.97e4T2 |
| 37 | 1−359.T+5.06e4T2 |
| 41 | 1−320.T+6.89e4T2 |
| 43 | 1+92.3T+7.95e4T2 |
| 47 | 1+67.4T+1.03e5T2 |
| 53 | 1−246.T+1.48e5T2 |
| 59 | 1−475.T+2.05e5T2 |
| 61 | 1+799.T+2.26e5T2 |
| 67 | 1+725.T+3.00e5T2 |
| 71 | 1+544.T+3.57e5T2 |
| 73 | 1+580.T+3.89e5T2 |
| 79 | 1+402.T+4.93e5T2 |
| 83 | 1−1.10e3T+5.71e5T2 |
| 89 | 1+1.25e3T+7.04e5T2 |
| 97 | 1+9.99e2T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.479264504763567314750885243206, −9.184441188353012851282104559707, −7.68327679839171147352884729232, −7.42069251850984945151730663946, −5.72566311713299537455326859646, −5.27849320457487709593338216840, −4.01275152710589195220119942013, −2.89011072785254005961638972133, −1.34468543103861334978274148012, 0,
1.34468543103861334978274148012, 2.89011072785254005961638972133, 4.01275152710589195220119942013, 5.27849320457487709593338216840, 5.72566311713299537455326859646, 7.42069251850984945151730663946, 7.68327679839171147352884729232, 9.184441188353012851282104559707, 9.479264504763567314750885243206