L(s) = 1 | + 5.31·2-s + 20.2·4-s − 7.25·5-s + 7·7-s + 64.8·8-s − 38.5·10-s + 11·11-s + 47.6·13-s + 37.1·14-s + 182.·16-s − 31.5·17-s + 18.9·19-s − 146.·20-s + 58.4·22-s + 200.·23-s − 72.4·25-s + 252.·26-s + 141.·28-s + 224.·29-s − 237.·31-s + 451.·32-s − 167.·34-s − 50.7·35-s + 226.·37-s + 100.·38-s − 470.·40-s − 31.1·41-s + ⋯ |
L(s) = 1 | + 1.87·2-s + 2.52·4-s − 0.648·5-s + 0.377·7-s + 2.86·8-s − 1.21·10-s + 0.301·11-s + 1.01·13-s + 0.709·14-s + 2.85·16-s − 0.450·17-s + 0.228·19-s − 1.63·20-s + 0.566·22-s + 1.81·23-s − 0.579·25-s + 1.90·26-s + 0.954·28-s + 1.43·29-s − 1.37·31-s + 2.49·32-s − 0.846·34-s − 0.245·35-s + 1.00·37-s + 0.429·38-s − 1.85·40-s − 0.118·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(693s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
7.032192481 |
L(21) |
≈ |
7.032192481 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1−7T |
| 11 | 1−11T |
good | 2 | 1−5.31T+8T2 |
| 5 | 1+7.25T+125T2 |
| 13 | 1−47.6T+2.19e3T2 |
| 17 | 1+31.5T+4.91e3T2 |
| 19 | 1−18.9T+6.85e3T2 |
| 23 | 1−200.T+1.21e4T2 |
| 29 | 1−224.T+2.43e4T2 |
| 31 | 1+237.T+2.97e4T2 |
| 37 | 1−226.T+5.06e4T2 |
| 41 | 1+31.1T+6.89e4T2 |
| 43 | 1+176.T+7.95e4T2 |
| 47 | 1−526.T+1.03e5T2 |
| 53 | 1+342.T+1.48e5T2 |
| 59 | 1+283.T+2.05e5T2 |
| 61 | 1+216.T+2.26e5T2 |
| 67 | 1+180.T+3.00e5T2 |
| 71 | 1+166.T+3.57e5T2 |
| 73 | 1−44.8T+3.89e5T2 |
| 79 | 1−349.T+4.93e5T2 |
| 83 | 1−722.T+5.71e5T2 |
| 89 | 1−443.T+7.04e5T2 |
| 97 | 1+1.80e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.75974907252442850699060157896, −9.132205180258756425215627362135, −8.000249797015241956799837335117, −7.09396940228255490626971622069, −6.31855956287401384017756014371, −5.34677099464930394279813634974, −4.46520337912063216056486937970, −3.70873069601795651740437440445, −2.76339494350361259916954255716, −1.33425038097813736915696245208,
1.33425038097813736915696245208, 2.76339494350361259916954255716, 3.70873069601795651740437440445, 4.46520337912063216056486937970, 5.34677099464930394279813634974, 6.31855956287401384017756014371, 7.09396940228255490626971622069, 8.000249797015241956799837335117, 9.132205180258756425215627362135, 10.75974907252442850699060157896