Properties

Label 2-693-1.1-c3-0-4
Degree $2$
Conductor $693$
Sign $1$
Analytic cond. $40.8883$
Root an. cond. $6.39439$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.85·2-s + 6.86·4-s − 5.82·5-s − 7·7-s + 4.38·8-s + 22.4·10-s − 11·11-s − 87.1·13-s + 26.9·14-s − 71.8·16-s + 119.·17-s + 23.9·19-s − 39.9·20-s + 42.4·22-s − 119.·23-s − 91.0·25-s + 335.·26-s − 48.0·28-s + 53.7·29-s − 69.0·31-s + 241.·32-s − 458.·34-s + 40.7·35-s + 28.6·37-s − 92.4·38-s − 25.5·40-s − 419.·41-s + ⋯
L(s)  = 1  − 1.36·2-s + 0.857·4-s − 0.521·5-s − 0.377·7-s + 0.193·8-s + 0.710·10-s − 0.301·11-s − 1.85·13-s + 0.515·14-s − 1.12·16-s + 1.69·17-s + 0.289·19-s − 0.447·20-s + 0.410·22-s − 1.08·23-s − 0.728·25-s + 2.53·26-s − 0.324·28-s + 0.344·29-s − 0.399·31-s + 1.33·32-s − 2.31·34-s + 0.197·35-s + 0.127·37-s − 0.394·38-s − 0.100·40-s − 1.59·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(40.8883\)
Root analytic conductor: \(6.39439\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 693,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.3922580025\)
\(L(\frac12)\) \(\approx\) \(0.3922580025\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + 7T \)
11 \( 1 + 11T \)
good2 \( 1 + 3.85T + 8T^{2} \)
5 \( 1 + 5.82T + 125T^{2} \)
13 \( 1 + 87.1T + 2.19e3T^{2} \)
17 \( 1 - 119.T + 4.91e3T^{2} \)
19 \( 1 - 23.9T + 6.85e3T^{2} \)
23 \( 1 + 119.T + 1.21e4T^{2} \)
29 \( 1 - 53.7T + 2.43e4T^{2} \)
31 \( 1 + 69.0T + 2.97e4T^{2} \)
37 \( 1 - 28.6T + 5.06e4T^{2} \)
41 \( 1 + 419.T + 6.89e4T^{2} \)
43 \( 1 + 40.0T + 7.95e4T^{2} \)
47 \( 1 + 74.1T + 1.03e5T^{2} \)
53 \( 1 - 244.T + 1.48e5T^{2} \)
59 \( 1 - 365.T + 2.05e5T^{2} \)
61 \( 1 + 456.T + 2.26e5T^{2} \)
67 \( 1 + 470.T + 3.00e5T^{2} \)
71 \( 1 + 359.T + 3.57e5T^{2} \)
73 \( 1 + 902.T + 3.89e5T^{2} \)
79 \( 1 - 707.T + 4.93e5T^{2} \)
83 \( 1 + 541.T + 5.71e5T^{2} \)
89 \( 1 - 559.T + 7.04e5T^{2} \)
97 \( 1 - 1.52e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.02807710294086412173407651179, −9.369553133563465427284524370280, −8.231248666633591103925035463511, −7.64402503980932719145798507113, −7.06753633136398318874858936043, −5.66008511873508182355819002144, −4.56287687440847775814121742433, −3.21427603445799429985494347293, −1.91627480023023785400789706772, −0.43129763167506888265700262038, 0.43129763167506888265700262038, 1.91627480023023785400789706772, 3.21427603445799429985494347293, 4.56287687440847775814121742433, 5.66008511873508182355819002144, 7.06753633136398318874858936043, 7.64402503980932719145798507113, 8.231248666633591103925035463511, 9.369553133563465427284524370280, 10.02807710294086412173407651179

Graph of the $Z$-function along the critical line