L(s) = 1 | − 3.85·2-s + 6.86·4-s − 5.82·5-s − 7·7-s + 4.38·8-s + 22.4·10-s − 11·11-s − 87.1·13-s + 26.9·14-s − 71.8·16-s + 119.·17-s + 23.9·19-s − 39.9·20-s + 42.4·22-s − 119.·23-s − 91.0·25-s + 335.·26-s − 48.0·28-s + 53.7·29-s − 69.0·31-s + 241.·32-s − 458.·34-s + 40.7·35-s + 28.6·37-s − 92.4·38-s − 25.5·40-s − 419.·41-s + ⋯ |
L(s) = 1 | − 1.36·2-s + 0.857·4-s − 0.521·5-s − 0.377·7-s + 0.193·8-s + 0.710·10-s − 0.301·11-s − 1.85·13-s + 0.515·14-s − 1.12·16-s + 1.69·17-s + 0.289·19-s − 0.447·20-s + 0.410·22-s − 1.08·23-s − 0.728·25-s + 2.53·26-s − 0.324·28-s + 0.344·29-s − 0.399·31-s + 1.33·32-s − 2.31·34-s + 0.197·35-s + 0.127·37-s − 0.394·38-s − 0.100·40-s − 1.59·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(693s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.3922580025 |
L(21) |
≈ |
0.3922580025 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+7T |
| 11 | 1+11T |
good | 2 | 1+3.85T+8T2 |
| 5 | 1+5.82T+125T2 |
| 13 | 1+87.1T+2.19e3T2 |
| 17 | 1−119.T+4.91e3T2 |
| 19 | 1−23.9T+6.85e3T2 |
| 23 | 1+119.T+1.21e4T2 |
| 29 | 1−53.7T+2.43e4T2 |
| 31 | 1+69.0T+2.97e4T2 |
| 37 | 1−28.6T+5.06e4T2 |
| 41 | 1+419.T+6.89e4T2 |
| 43 | 1+40.0T+7.95e4T2 |
| 47 | 1+74.1T+1.03e5T2 |
| 53 | 1−244.T+1.48e5T2 |
| 59 | 1−365.T+2.05e5T2 |
| 61 | 1+456.T+2.26e5T2 |
| 67 | 1+470.T+3.00e5T2 |
| 71 | 1+359.T+3.57e5T2 |
| 73 | 1+902.T+3.89e5T2 |
| 79 | 1−707.T+4.93e5T2 |
| 83 | 1+541.T+5.71e5T2 |
| 89 | 1−559.T+7.04e5T2 |
| 97 | 1−1.52e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.02807710294086412173407651179, −9.369553133563465427284524370280, −8.231248666633591103925035463511, −7.64402503980932719145798507113, −7.06753633136398318874858936043, −5.66008511873508182355819002144, −4.56287687440847775814121742433, −3.21427603445799429985494347293, −1.91627480023023785400789706772, −0.43129763167506888265700262038,
0.43129763167506888265700262038, 1.91627480023023785400789706772, 3.21427603445799429985494347293, 4.56287687440847775814121742433, 5.66008511873508182355819002144, 7.06753633136398318874858936043, 7.64402503980932719145798507113, 8.231248666633591103925035463511, 9.369553133563465427284524370280, 10.02807710294086412173407651179