Properties

Label 2-693-1.1-c3-0-39
Degree $2$
Conductor $693$
Sign $-1$
Analytic cond. $40.8883$
Root an. cond. $6.39439$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.561·2-s − 7.68·4-s − 18.6·5-s + 7·7-s + 8.80·8-s + 10.4·10-s + 11·11-s + 36.4·13-s − 3.93·14-s + 56.5·16-s − 41.1·17-s − 23.6·19-s + 143.·20-s − 6.17·22-s + 140.·23-s + 224.·25-s − 20.4·26-s − 53.7·28-s − 278.·29-s + 191.·31-s − 102.·32-s + 23.0·34-s − 130.·35-s + 196.·37-s + 13.3·38-s − 164.·40-s + 322.·41-s + ⋯
L(s)  = 1  − 0.198·2-s − 0.960·4-s − 1.67·5-s + 0.377·7-s + 0.389·8-s + 0.331·10-s + 0.301·11-s + 0.777·13-s − 0.0750·14-s + 0.883·16-s − 0.586·17-s − 0.286·19-s + 1.60·20-s − 0.0598·22-s + 1.26·23-s + 1.79·25-s − 0.154·26-s − 0.363·28-s − 1.78·29-s + 1.10·31-s − 0.564·32-s + 0.116·34-s − 0.631·35-s + 0.871·37-s + 0.0568·38-s − 0.650·40-s + 1.22·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(40.8883\)
Root analytic conductor: \(6.39439\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 693,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 - 7T \)
11 \( 1 - 11T \)
good2 \( 1 + 0.561T + 8T^{2} \)
5 \( 1 + 18.6T + 125T^{2} \)
13 \( 1 - 36.4T + 2.19e3T^{2} \)
17 \( 1 + 41.1T + 4.91e3T^{2} \)
19 \( 1 + 23.6T + 6.85e3T^{2} \)
23 \( 1 - 140.T + 1.21e4T^{2} \)
29 \( 1 + 278.T + 2.43e4T^{2} \)
31 \( 1 - 191.T + 2.97e4T^{2} \)
37 \( 1 - 196.T + 5.06e4T^{2} \)
41 \( 1 - 322.T + 6.89e4T^{2} \)
43 \( 1 + 3.67T + 7.95e4T^{2} \)
47 \( 1 - 397.T + 1.03e5T^{2} \)
53 \( 1 + 597.T + 1.48e5T^{2} \)
59 \( 1 + 668.T + 2.05e5T^{2} \)
61 \( 1 + 667.T + 2.26e5T^{2} \)
67 \( 1 + 730.T + 3.00e5T^{2} \)
71 \( 1 - 31.2T + 3.57e5T^{2} \)
73 \( 1 + 434.T + 3.89e5T^{2} \)
79 \( 1 + 782.T + 4.93e5T^{2} \)
83 \( 1 - 426.T + 5.71e5T^{2} \)
89 \( 1 - 899.T + 7.04e5T^{2} \)
97 \( 1 + 942.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.291499249620192903756288632822, −8.800852156284164029161057675573, −7.911556582000346082722831442695, −7.37463526735258782032998359880, −6.02916609716696278955398001203, −4.64842969665414758982860636284, −4.19144808374299801080415889668, −3.19288720211848933869566176116, −1.14519559924680600583646109908, 0, 1.14519559924680600583646109908, 3.19288720211848933869566176116, 4.19144808374299801080415889668, 4.64842969665414758982860636284, 6.02916609716696278955398001203, 7.37463526735258782032998359880, 7.911556582000346082722831442695, 8.800852156284164029161057675573, 9.291499249620192903756288632822

Graph of the $Z$-function along the critical line