L(s) = 1 | − 0.561·2-s − 7.68·4-s − 18.6·5-s + 7·7-s + 8.80·8-s + 10.4·10-s + 11·11-s + 36.4·13-s − 3.93·14-s + 56.5·16-s − 41.1·17-s − 23.6·19-s + 143.·20-s − 6.17·22-s + 140.·23-s + 224.·25-s − 20.4·26-s − 53.7·28-s − 278.·29-s + 191.·31-s − 102.·32-s + 23.0·34-s − 130.·35-s + 196.·37-s + 13.3·38-s − 164.·40-s + 322.·41-s + ⋯ |
L(s) = 1 | − 0.198·2-s − 0.960·4-s − 1.67·5-s + 0.377·7-s + 0.389·8-s + 0.331·10-s + 0.301·11-s + 0.777·13-s − 0.0750·14-s + 0.883·16-s − 0.586·17-s − 0.286·19-s + 1.60·20-s − 0.0598·22-s + 1.26·23-s + 1.79·25-s − 0.154·26-s − 0.363·28-s − 1.78·29-s + 1.10·31-s − 0.564·32-s + 0.116·34-s − 0.631·35-s + 0.871·37-s + 0.0568·38-s − 0.650·40-s + 1.22·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(693s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1−7T |
| 11 | 1−11T |
good | 2 | 1+0.561T+8T2 |
| 5 | 1+18.6T+125T2 |
| 13 | 1−36.4T+2.19e3T2 |
| 17 | 1+41.1T+4.91e3T2 |
| 19 | 1+23.6T+6.85e3T2 |
| 23 | 1−140.T+1.21e4T2 |
| 29 | 1+278.T+2.43e4T2 |
| 31 | 1−191.T+2.97e4T2 |
| 37 | 1−196.T+5.06e4T2 |
| 41 | 1−322.T+6.89e4T2 |
| 43 | 1+3.67T+7.95e4T2 |
| 47 | 1−397.T+1.03e5T2 |
| 53 | 1+597.T+1.48e5T2 |
| 59 | 1+668.T+2.05e5T2 |
| 61 | 1+667.T+2.26e5T2 |
| 67 | 1+730.T+3.00e5T2 |
| 71 | 1−31.2T+3.57e5T2 |
| 73 | 1+434.T+3.89e5T2 |
| 79 | 1+782.T+4.93e5T2 |
| 83 | 1−426.T+5.71e5T2 |
| 89 | 1−899.T+7.04e5T2 |
| 97 | 1+942.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.291499249620192903756288632822, −8.800852156284164029161057675573, −7.911556582000346082722831442695, −7.37463526735258782032998359880, −6.02916609716696278955398001203, −4.64842969665414758982860636284, −4.19144808374299801080415889668, −3.19288720211848933869566176116, −1.14519559924680600583646109908, 0,
1.14519559924680600583646109908, 3.19288720211848933869566176116, 4.19144808374299801080415889668, 4.64842969665414758982860636284, 6.02916609716696278955398001203, 7.37463526735258782032998359880, 7.911556582000346082722831442695, 8.800852156284164029161057675573, 9.291499249620192903756288632822