L(s) = 1 | − 5.62·2-s + 23.6·4-s − 7.12·5-s − 7·7-s − 87.8·8-s + 40.0·10-s + 11·11-s − 28.1·13-s + 39.3·14-s + 305.·16-s − 53.4·17-s + 154.·19-s − 168.·20-s − 61.8·22-s + 44.4·23-s − 74.3·25-s + 158.·26-s − 165.·28-s + 154.·29-s + 63.2·31-s − 1.01e3·32-s + 300.·34-s + 49.8·35-s − 137.·37-s − 866.·38-s + 625.·40-s − 442.·41-s + ⋯ |
L(s) = 1 | − 1.98·2-s + 2.95·4-s − 0.636·5-s − 0.377·7-s − 3.88·8-s + 1.26·10-s + 0.301·11-s − 0.600·13-s + 0.751·14-s + 4.76·16-s − 0.762·17-s + 1.86·19-s − 1.88·20-s − 0.599·22-s + 0.403·23-s − 0.594·25-s + 1.19·26-s − 1.11·28-s + 0.988·29-s + 0.366·31-s − 5.59·32-s + 1.51·34-s + 0.240·35-s − 0.611·37-s − 3.69·38-s + 2.47·40-s − 1.68·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(693s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+7T |
| 11 | 1−11T |
good | 2 | 1+5.62T+8T2 |
| 5 | 1+7.12T+125T2 |
| 13 | 1+28.1T+2.19e3T2 |
| 17 | 1+53.4T+4.91e3T2 |
| 19 | 1−154.T+6.85e3T2 |
| 23 | 1−44.4T+1.21e4T2 |
| 29 | 1−154.T+2.43e4T2 |
| 31 | 1−63.2T+2.97e4T2 |
| 37 | 1+137.T+5.06e4T2 |
| 41 | 1+442.T+6.89e4T2 |
| 43 | 1+48.2T+7.95e4T2 |
| 47 | 1−122.T+1.03e5T2 |
| 53 | 1−298.T+1.48e5T2 |
| 59 | 1−694.T+2.05e5T2 |
| 61 | 1+7.85T+2.26e5T2 |
| 67 | 1−467.T+3.00e5T2 |
| 71 | 1−984.T+3.57e5T2 |
| 73 | 1+128.T+3.89e5T2 |
| 79 | 1+1.33e3T+4.93e5T2 |
| 83 | 1−984.T+5.71e5T2 |
| 89 | 1+918.T+7.04e5T2 |
| 97 | 1+1.53e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.687046461794374040974517545338, −8.761930441574296621735906105898, −8.085987287474218385717142510177, −7.14911389672617409198250646391, −6.71876740315079389585767362723, −5.39809819897996569740280924410, −3.52134576320278526122207731924, −2.49049010650185843913023122691, −1.11533686454598848017752590049, 0,
1.11533686454598848017752590049, 2.49049010650185843913023122691, 3.52134576320278526122207731924, 5.39809819897996569740280924410, 6.71876740315079389585767362723, 7.14911389672617409198250646391, 8.085987287474218385717142510177, 8.761930441574296621735906105898, 9.687046461794374040974517545338