L(s) = 1 | − 4.54·2-s + 12.6·4-s − 13.1·5-s + 7·7-s − 21.0·8-s + 59.7·10-s + 11·11-s − 54.8·13-s − 31.7·14-s − 5.62·16-s + 79.9·17-s + 21.2·19-s − 166.·20-s − 49.9·22-s − 119.·23-s + 48.3·25-s + 249.·26-s + 88.3·28-s + 87.4·29-s + 191.·31-s + 193.·32-s − 362.·34-s − 92.1·35-s + 91.6·37-s − 96.5·38-s + 276.·40-s + 60.4·41-s + ⋯ |
L(s) = 1 | − 1.60·2-s + 1.57·4-s − 1.17·5-s + 0.377·7-s − 0.928·8-s + 1.89·10-s + 0.301·11-s − 1.16·13-s − 0.606·14-s − 0.0878·16-s + 1.14·17-s + 0.256·19-s − 1.85·20-s − 0.484·22-s − 1.08·23-s + 0.386·25-s + 1.87·26-s + 0.596·28-s + 0.560·29-s + 1.10·31-s + 1.06·32-s − 1.83·34-s − 0.445·35-s + 0.407·37-s − 0.412·38-s + 1.09·40-s + 0.230·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(693s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1−7T |
| 11 | 1−11T |
good | 2 | 1+4.54T+8T2 |
| 5 | 1+13.1T+125T2 |
| 13 | 1+54.8T+2.19e3T2 |
| 17 | 1−79.9T+4.91e3T2 |
| 19 | 1−21.2T+6.85e3T2 |
| 23 | 1+119.T+1.21e4T2 |
| 29 | 1−87.4T+2.43e4T2 |
| 31 | 1−191.T+2.97e4T2 |
| 37 | 1−91.6T+5.06e4T2 |
| 41 | 1−60.4T+6.89e4T2 |
| 43 | 1+213.T+7.95e4T2 |
| 47 | 1+417.T+1.03e5T2 |
| 53 | 1−414.T+1.48e5T2 |
| 59 | 1−358.T+2.05e5T2 |
| 61 | 1−515.T+2.26e5T2 |
| 67 | 1+107.T+3.00e5T2 |
| 71 | 1−711.T+3.57e5T2 |
| 73 | 1−131.T+3.89e5T2 |
| 79 | 1−10.4T+4.93e5T2 |
| 83 | 1−618.T+5.71e5T2 |
| 89 | 1+1.37e3T+7.04e5T2 |
| 97 | 1+534.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.850275722600019857445586262582, −8.573179794888514900965247735255, −7.977559958490869370132602264311, −7.48003209521311523840155229203, −6.54277824958488414116181866851, −5.04500182364427914562724302962, −3.89409295726334963251950373406, −2.50348578530698587819550462608, −1.10613199601176443737102633840, 0,
1.10613199601176443737102633840, 2.50348578530698587819550462608, 3.89409295726334963251950373406, 5.04500182364427914562724302962, 6.54277824958488414116181866851, 7.48003209521311523840155229203, 7.977559958490869370132602264311, 8.573179794888514900965247735255, 9.850275722600019857445586262582