Properties

Label 2-693-1.1-c3-0-35
Degree $2$
Conductor $693$
Sign $-1$
Analytic cond. $40.8883$
Root an. cond. $6.39439$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s − 4·4-s − 11·5-s − 7·7-s + 24·8-s + 22·10-s − 11·11-s − 5·13-s + 14·14-s − 16·16-s + 118·17-s − 105·19-s + 44·20-s + 22·22-s + 68·23-s − 4·25-s + 10·26-s + 28·28-s + 195·29-s + 214·31-s − 160·32-s − 236·34-s + 77·35-s + 33·37-s + 210·38-s − 264·40-s + 376·41-s + ⋯
L(s)  = 1  − 0.707·2-s − 1/2·4-s − 0.983·5-s − 0.377·7-s + 1.06·8-s + 0.695·10-s − 0.301·11-s − 0.106·13-s + 0.267·14-s − 1/4·16-s + 1.68·17-s − 1.26·19-s + 0.491·20-s + 0.213·22-s + 0.616·23-s − 0.0319·25-s + 0.0754·26-s + 0.188·28-s + 1.24·29-s + 1.23·31-s − 0.883·32-s − 1.19·34-s + 0.371·35-s + 0.146·37-s + 0.896·38-s − 1.04·40-s + 1.43·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(40.8883\)
Root analytic conductor: \(6.39439\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 693,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + p T \)
11 \( 1 + p T \)
good2 \( 1 + p T + p^{3} T^{2} \)
5 \( 1 + 11 T + p^{3} T^{2} \)
13 \( 1 + 5 T + p^{3} T^{2} \)
17 \( 1 - 118 T + p^{3} T^{2} \)
19 \( 1 + 105 T + p^{3} T^{2} \)
23 \( 1 - 68 T + p^{3} T^{2} \)
29 \( 1 - 195 T + p^{3} T^{2} \)
31 \( 1 - 214 T + p^{3} T^{2} \)
37 \( 1 - 33 T + p^{3} T^{2} \)
41 \( 1 - 376 T + p^{3} T^{2} \)
43 \( 1 + 168 T + p^{3} T^{2} \)
47 \( 1 + 61 T + p^{3} T^{2} \)
53 \( 1 + 24 T + p^{3} T^{2} \)
59 \( 1 + 625 T + p^{3} T^{2} \)
61 \( 1 + 558 T + p^{3} T^{2} \)
67 \( 1 - 173 T + p^{3} T^{2} \)
71 \( 1 + 168 T + p^{3} T^{2} \)
73 \( 1 - 973 T + p^{3} T^{2} \)
79 \( 1 + 1072 T + p^{3} T^{2} \)
83 \( 1 + 1458 T + p^{3} T^{2} \)
89 \( 1 - 198 T + p^{3} T^{2} \)
97 \( 1 + 352 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.690080354283100428463328679529, −8.630725087549140185856852816193, −8.029033511105383098361807536901, −7.36376097778730294582595768946, −6.16131591365869911538356879012, −4.87520469019249353765328428154, −4.06318388236473030531951589967, −2.92755015703034847216578885872, −1.10133640584924975490442967894, 0, 1.10133640584924975490442967894, 2.92755015703034847216578885872, 4.06318388236473030531951589967, 4.87520469019249353765328428154, 6.16131591365869911538356879012, 7.36376097778730294582595768946, 8.029033511105383098361807536901, 8.630725087549140185856852816193, 9.690080354283100428463328679529

Graph of the $Z$-function along the critical line