Properties

Label 2-693-1.1-c3-0-33
Degree $2$
Conductor $693$
Sign $1$
Analytic cond. $40.8883$
Root an. cond. $6.39439$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.21·2-s − 3.08·4-s + 22.0·5-s − 7·7-s − 24.5·8-s + 48.8·10-s − 11·11-s + 2.76·13-s − 15.5·14-s − 29.7·16-s + 50.6·17-s + 56.5·19-s − 68.0·20-s − 24.3·22-s + 172.·23-s + 360.·25-s + 6.13·26-s + 21.6·28-s − 282.·29-s + 237.·31-s + 130.·32-s + 112.·34-s − 154.·35-s + 207.·37-s + 125.·38-s − 541.·40-s − 386.·41-s + ⋯
L(s)  = 1  + 0.783·2-s − 0.386·4-s + 1.97·5-s − 0.377·7-s − 1.08·8-s + 1.54·10-s − 0.301·11-s + 0.0590·13-s − 0.296·14-s − 0.464·16-s + 0.722·17-s + 0.682·19-s − 0.761·20-s − 0.236·22-s + 1.56·23-s + 2.88·25-s + 0.0462·26-s + 0.145·28-s − 1.80·29-s + 1.37·31-s + 0.721·32-s + 0.566·34-s − 0.745·35-s + 0.920·37-s + 0.534·38-s − 2.14·40-s − 1.47·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(40.8883\)
Root analytic conductor: \(6.39439\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 693,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.654576454\)
\(L(\frac12)\) \(\approx\) \(3.654576454\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + 7T \)
11 \( 1 + 11T \)
good2 \( 1 - 2.21T + 8T^{2} \)
5 \( 1 - 22.0T + 125T^{2} \)
13 \( 1 - 2.76T + 2.19e3T^{2} \)
17 \( 1 - 50.6T + 4.91e3T^{2} \)
19 \( 1 - 56.5T + 6.85e3T^{2} \)
23 \( 1 - 172.T + 1.21e4T^{2} \)
29 \( 1 + 282.T + 2.43e4T^{2} \)
31 \( 1 - 237.T + 2.97e4T^{2} \)
37 \( 1 - 207.T + 5.06e4T^{2} \)
41 \( 1 + 386.T + 6.89e4T^{2} \)
43 \( 1 + 18.3T + 7.95e4T^{2} \)
47 \( 1 - 309.T + 1.03e5T^{2} \)
53 \( 1 - 480.T + 1.48e5T^{2} \)
59 \( 1 + 114.T + 2.05e5T^{2} \)
61 \( 1 - 109.T + 2.26e5T^{2} \)
67 \( 1 + 567.T + 3.00e5T^{2} \)
71 \( 1 - 780.T + 3.57e5T^{2} \)
73 \( 1 + 605.T + 3.89e5T^{2} \)
79 \( 1 - 686.T + 4.93e5T^{2} \)
83 \( 1 + 316.T + 5.71e5T^{2} \)
89 \( 1 - 1.61e3T + 7.04e5T^{2} \)
97 \( 1 + 1.23e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.850077558308333407642651123101, −9.425518644258138302195217914962, −8.624046254762289435025889291261, −7.13329046136621270068806198138, −6.12572047941256166886702454952, −5.50980137732487071677128003588, −4.87260921949520813706180408123, −3.37103794082095769803280396569, −2.49900577162958189467731688533, −1.04405278275181453343337043252, 1.04405278275181453343337043252, 2.49900577162958189467731688533, 3.37103794082095769803280396569, 4.87260921949520813706180408123, 5.50980137732487071677128003588, 6.12572047941256166886702454952, 7.13329046136621270068806198138, 8.624046254762289435025889291261, 9.425518644258138302195217914962, 9.850077558308333407642651123101

Graph of the $Z$-function along the critical line