L(s) = 1 | + 2.21·2-s − 3.08·4-s + 22.0·5-s − 7·7-s − 24.5·8-s + 48.8·10-s − 11·11-s + 2.76·13-s − 15.5·14-s − 29.7·16-s + 50.6·17-s + 56.5·19-s − 68.0·20-s − 24.3·22-s + 172.·23-s + 360.·25-s + 6.13·26-s + 21.6·28-s − 282.·29-s + 237.·31-s + 130.·32-s + 112.·34-s − 154.·35-s + 207.·37-s + 125.·38-s − 541.·40-s − 386.·41-s + ⋯ |
L(s) = 1 | + 0.783·2-s − 0.386·4-s + 1.97·5-s − 0.377·7-s − 1.08·8-s + 1.54·10-s − 0.301·11-s + 0.0590·13-s − 0.296·14-s − 0.464·16-s + 0.722·17-s + 0.682·19-s − 0.761·20-s − 0.236·22-s + 1.56·23-s + 2.88·25-s + 0.0462·26-s + 0.145·28-s − 1.80·29-s + 1.37·31-s + 0.721·32-s + 0.566·34-s − 0.745·35-s + 0.920·37-s + 0.534·38-s − 2.14·40-s − 1.47·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(693s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
3.654576454 |
L(21) |
≈ |
3.654576454 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+7T |
| 11 | 1+11T |
good | 2 | 1−2.21T+8T2 |
| 5 | 1−22.0T+125T2 |
| 13 | 1−2.76T+2.19e3T2 |
| 17 | 1−50.6T+4.91e3T2 |
| 19 | 1−56.5T+6.85e3T2 |
| 23 | 1−172.T+1.21e4T2 |
| 29 | 1+282.T+2.43e4T2 |
| 31 | 1−237.T+2.97e4T2 |
| 37 | 1−207.T+5.06e4T2 |
| 41 | 1+386.T+6.89e4T2 |
| 43 | 1+18.3T+7.95e4T2 |
| 47 | 1−309.T+1.03e5T2 |
| 53 | 1−480.T+1.48e5T2 |
| 59 | 1+114.T+2.05e5T2 |
| 61 | 1−109.T+2.26e5T2 |
| 67 | 1+567.T+3.00e5T2 |
| 71 | 1−780.T+3.57e5T2 |
| 73 | 1+605.T+3.89e5T2 |
| 79 | 1−686.T+4.93e5T2 |
| 83 | 1+316.T+5.71e5T2 |
| 89 | 1−1.61e3T+7.04e5T2 |
| 97 | 1+1.23e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.850077558308333407642651123101, −9.425518644258138302195217914962, −8.624046254762289435025889291261, −7.13329046136621270068806198138, −6.12572047941256166886702454952, −5.50980137732487071677128003588, −4.87260921949520813706180408123, −3.37103794082095769803280396569, −2.49900577162958189467731688533, −1.04405278275181453343337043252,
1.04405278275181453343337043252, 2.49900577162958189467731688533, 3.37103794082095769803280396569, 4.87260921949520813706180408123, 5.50980137732487071677128003588, 6.12572047941256166886702454952, 7.13329046136621270068806198138, 8.624046254762289435025889291261, 9.425518644258138302195217914962, 9.850077558308333407642651123101