L(s) = 1 | − 3.85·2-s + 6.86·4-s − 18.0·5-s − 7·7-s + 4.37·8-s + 69.5·10-s − 11·11-s + 16.8·13-s + 26.9·14-s − 71.7·16-s − 76.0·17-s + 11.8·19-s − 123.·20-s + 42.4·22-s + 175.·23-s + 200.·25-s − 64.9·26-s − 48.0·28-s + 219.·29-s − 214.·31-s + 241.·32-s + 293.·34-s + 126.·35-s + 272.·37-s − 45.8·38-s − 78.9·40-s − 204.·41-s + ⋯ |
L(s) = 1 | − 1.36·2-s + 0.858·4-s − 1.61·5-s − 0.377·7-s + 0.193·8-s + 2.19·10-s − 0.301·11-s + 0.359·13-s + 0.515·14-s − 1.12·16-s − 1.08·17-s + 0.143·19-s − 1.38·20-s + 0.410·22-s + 1.59·23-s + 1.60·25-s − 0.489·26-s − 0.324·28-s + 1.40·29-s − 1.24·31-s + 1.33·32-s + 1.47·34-s + 0.609·35-s + 1.21·37-s − 0.195·38-s − 0.312·40-s − 0.780·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(693s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+7T |
| 11 | 1+11T |
good | 2 | 1+3.85T+8T2 |
| 5 | 1+18.0T+125T2 |
| 13 | 1−16.8T+2.19e3T2 |
| 17 | 1+76.0T+4.91e3T2 |
| 19 | 1−11.8T+6.85e3T2 |
| 23 | 1−175.T+1.21e4T2 |
| 29 | 1−219.T+2.43e4T2 |
| 31 | 1+214.T+2.97e4T2 |
| 37 | 1−272.T+5.06e4T2 |
| 41 | 1+204.T+6.89e4T2 |
| 43 | 1−406.T+7.95e4T2 |
| 47 | 1+178.T+1.03e5T2 |
| 53 | 1−238.T+1.48e5T2 |
| 59 | 1−584.T+2.05e5T2 |
| 61 | 1+910.T+2.26e5T2 |
| 67 | 1+387.T+3.00e5T2 |
| 71 | 1−668.T+3.57e5T2 |
| 73 | 1−390.T+3.89e5T2 |
| 79 | 1+250.T+4.93e5T2 |
| 83 | 1−54.2T+5.71e5T2 |
| 89 | 1−906.T+7.04e5T2 |
| 97 | 1−618.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.368298233270626770570725351583, −8.766854187541899880315934509307, −8.027205823984859827455744637411, −7.29640448502911741119679744593, −6.59266412295047314007437206080, −4.88603513088611670629321519876, −3.95552492277847087508546426587, −2.71817517107884976265953999878, −0.978046534140947832490399795836, 0,
0.978046534140947832490399795836, 2.71817517107884976265953999878, 3.95552492277847087508546426587, 4.88603513088611670629321519876, 6.59266412295047314007437206080, 7.29640448502911741119679744593, 8.027205823984859827455744637411, 8.766854187541899880315934509307, 9.368298233270626770570725351583