L(s) = 1 | + 3.09·2-s + 1.56·4-s − 0.265·5-s + 7·7-s − 19.9·8-s − 0.820·10-s + 11·11-s + 9.99·13-s + 21.6·14-s − 74.0·16-s + 103.·17-s + 54.7·19-s − 0.415·20-s + 34.0·22-s − 26.6·23-s − 124.·25-s + 30.9·26-s + 10.9·28-s − 17.2·29-s + 202.·31-s − 69.8·32-s + 320.·34-s − 1.85·35-s + 244.·37-s + 169.·38-s + 5.28·40-s + 306.·41-s + ⋯ |
L(s) = 1 | + 1.09·2-s + 0.195·4-s − 0.0237·5-s + 0.377·7-s − 0.879·8-s − 0.0259·10-s + 0.301·11-s + 0.213·13-s + 0.413·14-s − 1.15·16-s + 1.47·17-s + 0.660·19-s − 0.00464·20-s + 0.329·22-s − 0.241·23-s − 0.999·25-s + 0.233·26-s + 0.0739·28-s − 0.110·29-s + 1.17·31-s − 0.385·32-s + 1.61·34-s − 0.00897·35-s + 1.08·37-s + 0.722·38-s + 0.0208·40-s + 1.16·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(693s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
3.495316022 |
L(21) |
≈ |
3.495316022 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1−7T |
| 11 | 1−11T |
good | 2 | 1−3.09T+8T2 |
| 5 | 1+0.265T+125T2 |
| 13 | 1−9.99T+2.19e3T2 |
| 17 | 1−103.T+4.91e3T2 |
| 19 | 1−54.7T+6.85e3T2 |
| 23 | 1+26.6T+1.21e4T2 |
| 29 | 1+17.2T+2.43e4T2 |
| 31 | 1−202.T+2.97e4T2 |
| 37 | 1−244.T+5.06e4T2 |
| 41 | 1−306.T+6.89e4T2 |
| 43 | 1−330.T+7.95e4T2 |
| 47 | 1−74.6T+1.03e5T2 |
| 53 | 1−428.T+1.48e5T2 |
| 59 | 1+350.T+2.05e5T2 |
| 61 | 1−153.T+2.26e5T2 |
| 67 | 1−192.T+3.00e5T2 |
| 71 | 1−821.T+3.57e5T2 |
| 73 | 1+727.T+3.89e5T2 |
| 79 | 1+410.T+4.93e5T2 |
| 83 | 1+289.T+5.71e5T2 |
| 89 | 1+225.T+7.04e5T2 |
| 97 | 1+420.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.00839544703775419088322859019, −9.314717284416127258382817733924, −8.217696754652972852149057034554, −7.39764088670882584389900141373, −6.07965505672977283676181089883, −5.56302377624991190886534377699, −4.47366350300789552851419321658, −3.69109725887804620821313044823, −2.61092905111339169472971664367, −0.960717694687656106476898507657,
0.960717694687656106476898507657, 2.61092905111339169472971664367, 3.69109725887804620821313044823, 4.47366350300789552851419321658, 5.56302377624991190886534377699, 6.07965505672977283676181089883, 7.39764088670882584389900141373, 8.217696754652972852149057034554, 9.314717284416127258382817733924, 10.00839544703775419088322859019