L(s) = 1 | − 1.59·2-s − 5.44·4-s + 17.2·5-s + 7·7-s + 21.5·8-s − 27.6·10-s − 11·11-s + 46.1·13-s − 11.1·14-s + 9.11·16-s − 19.8·17-s + 76.5·19-s − 93.9·20-s + 17.5·22-s + 163.·23-s + 173.·25-s − 73.7·26-s − 38.0·28-s − 158.·29-s + 170.·31-s − 186.·32-s + 31.7·34-s + 120.·35-s − 245.·37-s − 122.·38-s + 371.·40-s + 3.33·41-s + ⋯ |
L(s) = 1 | − 0.565·2-s − 0.680·4-s + 1.54·5-s + 0.377·7-s + 0.950·8-s − 0.874·10-s − 0.301·11-s + 0.983·13-s − 0.213·14-s + 0.142·16-s − 0.283·17-s + 0.924·19-s − 1.05·20-s + 0.170·22-s + 1.47·23-s + 1.38·25-s − 0.556·26-s − 0.257·28-s − 1.01·29-s + 0.989·31-s − 1.03·32-s + 0.160·34-s + 0.584·35-s − 1.09·37-s − 0.522·38-s + 1.46·40-s + 0.0127·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(693s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.941850451 |
L(21) |
≈ |
1.941850451 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1−7T |
| 11 | 1+11T |
good | 2 | 1+1.59T+8T2 |
| 5 | 1−17.2T+125T2 |
| 13 | 1−46.1T+2.19e3T2 |
| 17 | 1+19.8T+4.91e3T2 |
| 19 | 1−76.5T+6.85e3T2 |
| 23 | 1−163.T+1.21e4T2 |
| 29 | 1+158.T+2.43e4T2 |
| 31 | 1−170.T+2.97e4T2 |
| 37 | 1+245.T+5.06e4T2 |
| 41 | 1−3.33T+6.89e4T2 |
| 43 | 1+122.T+7.95e4T2 |
| 47 | 1+390.T+1.03e5T2 |
| 53 | 1−410.T+1.48e5T2 |
| 59 | 1+408.T+2.05e5T2 |
| 61 | 1+21.9T+2.26e5T2 |
| 67 | 1−618.T+3.00e5T2 |
| 71 | 1+929.T+3.57e5T2 |
| 73 | 1−868.T+3.89e5T2 |
| 79 | 1−152.T+4.93e5T2 |
| 83 | 1−100.T+5.71e5T2 |
| 89 | 1−1.06e3T+7.04e5T2 |
| 97 | 1−1.41e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.975134798553365431949019210853, −9.153512138391453150467368880748, −8.669914983972517088752935633477, −7.59528417470824914659072702850, −6.49827509700104427821851259377, −5.45156880061480114105859377419, −4.84988767304440927799871452842, −3.35576340975389550884811278914, −1.88441430002707892073965282103, −0.954094278141210649750337880694,
0.954094278141210649750337880694, 1.88441430002707892073965282103, 3.35576340975389550884811278914, 4.84988767304440927799871452842, 5.45156880061480114105859377419, 6.49827509700104427821851259377, 7.59528417470824914659072702850, 8.669914983972517088752935633477, 9.153512138391453150467368880748, 9.975134798553365431949019210853