Properties

Label 2-693-1.1-c3-0-28
Degree $2$
Conductor $693$
Sign $1$
Analytic cond. $40.8883$
Root an. cond. $6.39439$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.59·2-s − 5.44·4-s + 17.2·5-s + 7·7-s + 21.5·8-s − 27.6·10-s − 11·11-s + 46.1·13-s − 11.1·14-s + 9.11·16-s − 19.8·17-s + 76.5·19-s − 93.9·20-s + 17.5·22-s + 163.·23-s + 173.·25-s − 73.7·26-s − 38.0·28-s − 158.·29-s + 170.·31-s − 186.·32-s + 31.7·34-s + 120.·35-s − 245.·37-s − 122.·38-s + 371.·40-s + 3.33·41-s + ⋯
L(s)  = 1  − 0.565·2-s − 0.680·4-s + 1.54·5-s + 0.377·7-s + 0.950·8-s − 0.874·10-s − 0.301·11-s + 0.983·13-s − 0.213·14-s + 0.142·16-s − 0.283·17-s + 0.924·19-s − 1.05·20-s + 0.170·22-s + 1.47·23-s + 1.38·25-s − 0.556·26-s − 0.257·28-s − 1.01·29-s + 0.989·31-s − 1.03·32-s + 0.160·34-s + 0.584·35-s − 1.09·37-s − 0.522·38-s + 1.46·40-s + 0.0127·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(40.8883\)
Root analytic conductor: \(6.39439\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 693,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.941850451\)
\(L(\frac12)\) \(\approx\) \(1.941850451\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 - 7T \)
11 \( 1 + 11T \)
good2 \( 1 + 1.59T + 8T^{2} \)
5 \( 1 - 17.2T + 125T^{2} \)
13 \( 1 - 46.1T + 2.19e3T^{2} \)
17 \( 1 + 19.8T + 4.91e3T^{2} \)
19 \( 1 - 76.5T + 6.85e3T^{2} \)
23 \( 1 - 163.T + 1.21e4T^{2} \)
29 \( 1 + 158.T + 2.43e4T^{2} \)
31 \( 1 - 170.T + 2.97e4T^{2} \)
37 \( 1 + 245.T + 5.06e4T^{2} \)
41 \( 1 - 3.33T + 6.89e4T^{2} \)
43 \( 1 + 122.T + 7.95e4T^{2} \)
47 \( 1 + 390.T + 1.03e5T^{2} \)
53 \( 1 - 410.T + 1.48e5T^{2} \)
59 \( 1 + 408.T + 2.05e5T^{2} \)
61 \( 1 + 21.9T + 2.26e5T^{2} \)
67 \( 1 - 618.T + 3.00e5T^{2} \)
71 \( 1 + 929.T + 3.57e5T^{2} \)
73 \( 1 - 868.T + 3.89e5T^{2} \)
79 \( 1 - 152.T + 4.93e5T^{2} \)
83 \( 1 - 100.T + 5.71e5T^{2} \)
89 \( 1 - 1.06e3T + 7.04e5T^{2} \)
97 \( 1 - 1.41e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.975134798553365431949019210853, −9.153512138391453150467368880748, −8.669914983972517088752935633477, −7.59528417470824914659072702850, −6.49827509700104427821851259377, −5.45156880061480114105859377419, −4.84988767304440927799871452842, −3.35576340975389550884811278914, −1.88441430002707892073965282103, −0.954094278141210649750337880694, 0.954094278141210649750337880694, 1.88441430002707892073965282103, 3.35576340975389550884811278914, 4.84988767304440927799871452842, 5.45156880061480114105859377419, 6.49827509700104427821851259377, 7.59528417470824914659072702850, 8.669914983972517088752935633477, 9.153512138391453150467368880748, 9.975134798553365431949019210853

Graph of the $Z$-function along the critical line