Properties

Label 2-693-1.1-c3-0-25
Degree $2$
Conductor $693$
Sign $1$
Analytic cond. $40.8883$
Root an. cond. $6.39439$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.45·2-s + 11.8·4-s + 12.1·5-s + 7·7-s − 17.2·8-s − 54.3·10-s + 11·11-s − 15.6·13-s − 31.1·14-s − 18.1·16-s + 43.3·17-s + 51.7·19-s + 144.·20-s − 49.0·22-s + 121.·23-s + 23.6·25-s + 69.7·26-s + 83.0·28-s + 187.·29-s + 91.9·31-s + 218.·32-s − 193.·34-s + 85.3·35-s − 226.·37-s − 230.·38-s − 209.·40-s − 11.2·41-s + ⋯
L(s)  = 1  − 1.57·2-s + 1.48·4-s + 1.09·5-s + 0.377·7-s − 0.760·8-s − 1.71·10-s + 0.301·11-s − 0.333·13-s − 0.595·14-s − 0.283·16-s + 0.618·17-s + 0.625·19-s + 1.61·20-s − 0.475·22-s + 1.09·23-s + 0.188·25-s + 0.526·26-s + 0.560·28-s + 1.19·29-s + 0.532·31-s + 1.20·32-s − 0.973·34-s + 0.412·35-s − 1.00·37-s − 0.985·38-s − 0.829·40-s − 0.0430·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(40.8883\)
Root analytic conductor: \(6.39439\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 693,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.291178189\)
\(L(\frac12)\) \(\approx\) \(1.291178189\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 - 7T \)
11 \( 1 - 11T \)
good2 \( 1 + 4.45T + 8T^{2} \)
5 \( 1 - 12.1T + 125T^{2} \)
13 \( 1 + 15.6T + 2.19e3T^{2} \)
17 \( 1 - 43.3T + 4.91e3T^{2} \)
19 \( 1 - 51.7T + 6.85e3T^{2} \)
23 \( 1 - 121.T + 1.21e4T^{2} \)
29 \( 1 - 187.T + 2.43e4T^{2} \)
31 \( 1 - 91.9T + 2.97e4T^{2} \)
37 \( 1 + 226.T + 5.06e4T^{2} \)
41 \( 1 + 11.2T + 6.89e4T^{2} \)
43 \( 1 + 98.0T + 7.95e4T^{2} \)
47 \( 1 - 186.T + 1.03e5T^{2} \)
53 \( 1 - 487.T + 1.48e5T^{2} \)
59 \( 1 + 697.T + 2.05e5T^{2} \)
61 \( 1 - 486.T + 2.26e5T^{2} \)
67 \( 1 + 436.T + 3.00e5T^{2} \)
71 \( 1 + 715.T + 3.57e5T^{2} \)
73 \( 1 + 860.T + 3.89e5T^{2} \)
79 \( 1 - 157.T + 4.93e5T^{2} \)
83 \( 1 - 397.T + 5.71e5T^{2} \)
89 \( 1 + 237.T + 7.04e5T^{2} \)
97 \( 1 - 590.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.07428954119634228263837995444, −9.173638662485378044106422717431, −8.614490607159946114126066581415, −7.58125019211478982373393901256, −6.84555090430115715223854636795, −5.80969932318821890562048343018, −4.74430683349647594119378387895, −2.92603031935082200278204693207, −1.77843542542002214978940912404, −0.884472823845140951219432637219, 0.884472823845140951219432637219, 1.77843542542002214978940912404, 2.92603031935082200278204693207, 4.74430683349647594119378387895, 5.80969932318821890562048343018, 6.84555090430115715223854636795, 7.58125019211478982373393901256, 8.614490607159946114126066581415, 9.173638662485378044106422717431, 10.07428954119634228263837995444

Graph of the $Z$-function along the critical line