L(s) = 1 | − 4.45·2-s + 11.8·4-s + 12.1·5-s + 7·7-s − 17.2·8-s − 54.3·10-s + 11·11-s − 15.6·13-s − 31.1·14-s − 18.1·16-s + 43.3·17-s + 51.7·19-s + 144.·20-s − 49.0·22-s + 121.·23-s + 23.6·25-s + 69.7·26-s + 83.0·28-s + 187.·29-s + 91.9·31-s + 218.·32-s − 193.·34-s + 85.3·35-s − 226.·37-s − 230.·38-s − 209.·40-s − 11.2·41-s + ⋯ |
L(s) = 1 | − 1.57·2-s + 1.48·4-s + 1.09·5-s + 0.377·7-s − 0.760·8-s − 1.71·10-s + 0.301·11-s − 0.333·13-s − 0.595·14-s − 0.283·16-s + 0.618·17-s + 0.625·19-s + 1.61·20-s − 0.475·22-s + 1.09·23-s + 0.188·25-s + 0.526·26-s + 0.560·28-s + 1.19·29-s + 0.532·31-s + 1.20·32-s − 0.973·34-s + 0.412·35-s − 1.00·37-s − 0.985·38-s − 0.829·40-s − 0.0430·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(693s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.291178189 |
L(21) |
≈ |
1.291178189 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1−7T |
| 11 | 1−11T |
good | 2 | 1+4.45T+8T2 |
| 5 | 1−12.1T+125T2 |
| 13 | 1+15.6T+2.19e3T2 |
| 17 | 1−43.3T+4.91e3T2 |
| 19 | 1−51.7T+6.85e3T2 |
| 23 | 1−121.T+1.21e4T2 |
| 29 | 1−187.T+2.43e4T2 |
| 31 | 1−91.9T+2.97e4T2 |
| 37 | 1+226.T+5.06e4T2 |
| 41 | 1+11.2T+6.89e4T2 |
| 43 | 1+98.0T+7.95e4T2 |
| 47 | 1−186.T+1.03e5T2 |
| 53 | 1−487.T+1.48e5T2 |
| 59 | 1+697.T+2.05e5T2 |
| 61 | 1−486.T+2.26e5T2 |
| 67 | 1+436.T+3.00e5T2 |
| 71 | 1+715.T+3.57e5T2 |
| 73 | 1+860.T+3.89e5T2 |
| 79 | 1−157.T+4.93e5T2 |
| 83 | 1−397.T+5.71e5T2 |
| 89 | 1+237.T+7.04e5T2 |
| 97 | 1−590.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.07428954119634228263837995444, −9.173638662485378044106422717431, −8.614490607159946114126066581415, −7.58125019211478982373393901256, −6.84555090430115715223854636795, −5.80969932318821890562048343018, −4.74430683349647594119378387895, −2.92603031935082200278204693207, −1.77843542542002214978940912404, −0.884472823845140951219432637219,
0.884472823845140951219432637219, 1.77843542542002214978940912404, 2.92603031935082200278204693207, 4.74430683349647594119378387895, 5.80969932318821890562048343018, 6.84555090430115715223854636795, 7.58125019211478982373393901256, 8.614490607159946114126066581415, 9.173638662485378044106422717431, 10.07428954119634228263837995444