L(s) = 1 | − 3·2-s + 4-s + 14·5-s − 7·7-s + 21·8-s − 42·10-s + 11·11-s + 2·13-s + 21·14-s − 71·16-s + 74·17-s + 14·20-s − 33·22-s + 148·23-s + 71·25-s − 6·26-s − 7·28-s − 26·29-s + 112·31-s + 45·32-s − 222·34-s − 98·35-s − 98·37-s + 294·40-s + 10·41-s + 208·43-s + 11·44-s + ⋯ |
L(s) = 1 | − 1.06·2-s + 1/8·4-s + 1.25·5-s − 0.377·7-s + 0.928·8-s − 1.32·10-s + 0.301·11-s + 0.0426·13-s + 0.400·14-s − 1.10·16-s + 1.05·17-s + 0.156·20-s − 0.319·22-s + 1.34·23-s + 0.567·25-s − 0.0452·26-s − 0.0472·28-s − 0.166·29-s + 0.648·31-s + 0.248·32-s − 1.11·34-s − 0.473·35-s − 0.435·37-s + 1.16·40-s + 0.0380·41-s + 0.737·43-s + 0.0376·44-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(693s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.381533640 |
L(21) |
≈ |
1.381533640 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+pT |
| 11 | 1−pT |
good | 2 | 1+3T+p3T2 |
| 5 | 1−14T+p3T2 |
| 13 | 1−2T+p3T2 |
| 17 | 1−74T+p3T2 |
| 19 | 1+p3T2 |
| 23 | 1−148T+p3T2 |
| 29 | 1+26T+p3T2 |
| 31 | 1−112T+p3T2 |
| 37 | 1+98T+p3T2 |
| 41 | 1−10T+p3T2 |
| 43 | 1−208T+p3T2 |
| 47 | 1+460T+p3T2 |
| 53 | 1+258T+p3T2 |
| 59 | 1−204T+p3T2 |
| 61 | 1−178T+p3T2 |
| 67 | 1+924T+p3T2 |
| 71 | 1−748T+p3T2 |
| 73 | 1+230T+p3T2 |
| 79 | 1+456T+p3T2 |
| 83 | 1−228T+p3T2 |
| 89 | 1−198T+p3T2 |
| 97 | 1−562T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.886398178248379544860494558359, −9.329199835206800537243620382934, −8.605538940027315713883353534933, −7.57620374228745966013744538783, −6.65841078082897294538706593515, −5.69459977783263275639729743975, −4.70921456100148149312023808814, −3.20298106283103105230625728271, −1.83983440378421350374546410015, −0.841711287666450173254551209289,
0.841711287666450173254551209289, 1.83983440378421350374546410015, 3.20298106283103105230625728271, 4.70921456100148149312023808814, 5.69459977783263275639729743975, 6.65841078082897294538706593515, 7.57620374228745966013744538783, 8.605538940027315713883353534933, 9.329199835206800537243620382934, 9.886398178248379544860494558359