L(s) = 1 | + 3.63·2-s + 5.18·4-s − 21.1·5-s + 7·7-s − 10.2·8-s − 76.6·10-s − 11·11-s + 87.3·13-s + 25.4·14-s − 78.6·16-s + 28.2·17-s − 97.9·19-s − 109.·20-s − 39.9·22-s + 112.·23-s + 320.·25-s + 317.·26-s + 36.2·28-s − 14.9·29-s + 138.·31-s − 203.·32-s + 102.·34-s − 147.·35-s + 206.·37-s − 355.·38-s + 215.·40-s − 321.·41-s + ⋯ |
L(s) = 1 | + 1.28·2-s + 0.647·4-s − 1.88·5-s + 0.377·7-s − 0.452·8-s − 2.42·10-s − 0.301·11-s + 1.86·13-s + 0.485·14-s − 1.22·16-s + 0.403·17-s − 1.18·19-s − 1.22·20-s − 0.387·22-s + 1.01·23-s + 2.56·25-s + 2.39·26-s + 0.244·28-s − 0.0955·29-s + 0.802·31-s − 1.12·32-s + 0.517·34-s − 0.713·35-s + 0.919·37-s − 1.51·38-s + 0.853·40-s − 1.22·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(693s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.622370317 |
L(21) |
≈ |
2.622370317 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1−7T |
| 11 | 1+11T |
good | 2 | 1−3.63T+8T2 |
| 5 | 1+21.1T+125T2 |
| 13 | 1−87.3T+2.19e3T2 |
| 17 | 1−28.2T+4.91e3T2 |
| 19 | 1+97.9T+6.85e3T2 |
| 23 | 1−112.T+1.21e4T2 |
| 29 | 1+14.9T+2.43e4T2 |
| 31 | 1−138.T+2.97e4T2 |
| 37 | 1−206.T+5.06e4T2 |
| 41 | 1+321.T+6.89e4T2 |
| 43 | 1−285.T+7.95e4T2 |
| 47 | 1−303.T+1.03e5T2 |
| 53 | 1−554.T+1.48e5T2 |
| 59 | 1−693.T+2.05e5T2 |
| 61 | 1−156.T+2.26e5T2 |
| 67 | 1−584.T+3.00e5T2 |
| 71 | 1+363.T+3.57e5T2 |
| 73 | 1+747.T+3.89e5T2 |
| 79 | 1−419.T+4.93e5T2 |
| 83 | 1+1.17e3T+5.71e5T2 |
| 89 | 1−397.T+7.04e5T2 |
| 97 | 1+1.33e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.53546410758396223170220680306, −8.703004181212584552021084316538, −8.443741241858736150161418802768, −7.30874993226106632022443840921, −6.38434472266800392644747030944, −5.30991150451472222951706877945, −4.23450970235591637826271717707, −3.86082219982395648308233352338, −2.84676433370662967029939020265, −0.77938499790889467037464318533,
0.77938499790889467037464318533, 2.84676433370662967029939020265, 3.86082219982395648308233352338, 4.23450970235591637826271717707, 5.30991150451472222951706877945, 6.38434472266800392644747030944, 7.30874993226106632022443840921, 8.443741241858736150161418802768, 8.703004181212584552021084316538, 10.53546410758396223170220680306