Properties

Label 2-693-1.1-c3-0-19
Degree $2$
Conductor $693$
Sign $1$
Analytic cond. $40.8883$
Root an. cond. $6.39439$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s − 4·4-s − 5-s − 7·7-s − 24·8-s − 2·10-s + 11·11-s + 7·13-s − 14·14-s − 16·16-s + 14·17-s − 45·19-s + 4·20-s + 22·22-s + 88·23-s − 124·25-s + 14·26-s + 28·28-s + 69·29-s + 22·31-s + 160·32-s + 28·34-s + 7·35-s + 57·37-s − 90·38-s + 24·40-s + 380·41-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 0.0894·5-s − 0.377·7-s − 1.06·8-s − 0.0632·10-s + 0.301·11-s + 0.149·13-s − 0.267·14-s − 1/4·16-s + 0.199·17-s − 0.543·19-s + 0.0447·20-s + 0.213·22-s + 0.797·23-s − 0.991·25-s + 0.105·26-s + 0.188·28-s + 0.441·29-s + 0.127·31-s + 0.883·32-s + 0.141·34-s + 0.0338·35-s + 0.253·37-s − 0.384·38-s + 0.0948·40-s + 1.44·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(40.8883\)
Root analytic conductor: \(6.39439\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 693,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.991144552\)
\(L(\frac12)\) \(\approx\) \(1.991144552\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + p T \)
11 \( 1 - p T \)
good2 \( 1 - p T + p^{3} T^{2} \)
5 \( 1 + T + p^{3} T^{2} \)
13 \( 1 - 7 T + p^{3} T^{2} \)
17 \( 1 - 14 T + p^{3} T^{2} \)
19 \( 1 + 45 T + p^{3} T^{2} \)
23 \( 1 - 88 T + p^{3} T^{2} \)
29 \( 1 - 69 T + p^{3} T^{2} \)
31 \( 1 - 22 T + p^{3} T^{2} \)
37 \( 1 - 57 T + p^{3} T^{2} \)
41 \( 1 - 380 T + p^{3} T^{2} \)
43 \( 1 - 48 T + p^{3} T^{2} \)
47 \( 1 - 385 T + p^{3} T^{2} \)
53 \( 1 - 672 T + p^{3} T^{2} \)
59 \( 1 - 469 T + p^{3} T^{2} \)
61 \( 1 + 342 T + p^{3} T^{2} \)
67 \( 1 + 139 T + p^{3} T^{2} \)
71 \( 1 + 132 T + p^{3} T^{2} \)
73 \( 1 - 145 T + p^{3} T^{2} \)
79 \( 1 - 1244 T + p^{3} T^{2} \)
83 \( 1 + 522 T + p^{3} T^{2} \)
89 \( 1 + 822 T + p^{3} T^{2} \)
97 \( 1 - 272 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.987994068731365345071473404866, −9.186896069311863973039843929473, −8.473894102148616565102028162203, −7.34223425182523230787220981400, −6.25905327476354122980015967423, −5.53730142149248904993793084082, −4.41858659939594583211532429344, −3.70021117167718319732584525304, −2.55313846555331212411806747010, −0.73257860969446132913644639821, 0.73257860969446132913644639821, 2.55313846555331212411806747010, 3.70021117167718319732584525304, 4.41858659939594583211532429344, 5.53730142149248904993793084082, 6.25905327476354122980015967423, 7.34223425182523230787220981400, 8.473894102148616565102028162203, 9.186896069311863973039843929473, 9.987994068731365345071473404866

Graph of the $Z$-function along the critical line