L(s) = 1 | + 2·2-s − 4·4-s − 5-s − 7·7-s − 24·8-s − 2·10-s + 11·11-s + 7·13-s − 14·14-s − 16·16-s + 14·17-s − 45·19-s + 4·20-s + 22·22-s + 88·23-s − 124·25-s + 14·26-s + 28·28-s + 69·29-s + 22·31-s + 160·32-s + 28·34-s + 7·35-s + 57·37-s − 90·38-s + 24·40-s + 380·41-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1/2·4-s − 0.0894·5-s − 0.377·7-s − 1.06·8-s − 0.0632·10-s + 0.301·11-s + 0.149·13-s − 0.267·14-s − 1/4·16-s + 0.199·17-s − 0.543·19-s + 0.0447·20-s + 0.213·22-s + 0.797·23-s − 0.991·25-s + 0.105·26-s + 0.188·28-s + 0.441·29-s + 0.127·31-s + 0.883·32-s + 0.141·34-s + 0.0338·35-s + 0.253·37-s − 0.384·38-s + 0.0948·40-s + 1.44·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(693s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.991144552 |
L(21) |
≈ |
1.991144552 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+pT |
| 11 | 1−pT |
good | 2 | 1−pT+p3T2 |
| 5 | 1+T+p3T2 |
| 13 | 1−7T+p3T2 |
| 17 | 1−14T+p3T2 |
| 19 | 1+45T+p3T2 |
| 23 | 1−88T+p3T2 |
| 29 | 1−69T+p3T2 |
| 31 | 1−22T+p3T2 |
| 37 | 1−57T+p3T2 |
| 41 | 1−380T+p3T2 |
| 43 | 1−48T+p3T2 |
| 47 | 1−385T+p3T2 |
| 53 | 1−672T+p3T2 |
| 59 | 1−469T+p3T2 |
| 61 | 1+342T+p3T2 |
| 67 | 1+139T+p3T2 |
| 71 | 1+132T+p3T2 |
| 73 | 1−145T+p3T2 |
| 79 | 1−1244T+p3T2 |
| 83 | 1+522T+p3T2 |
| 89 | 1+822T+p3T2 |
| 97 | 1−272T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.987994068731365345071473404866, −9.186896069311863973039843929473, −8.473894102148616565102028162203, −7.34223425182523230787220981400, −6.25905327476354122980015967423, −5.53730142149248904993793084082, −4.41858659939594583211532429344, −3.70021117167718319732584525304, −2.55313846555331212411806747010, −0.73257860969446132913644639821,
0.73257860969446132913644639821, 2.55313846555331212411806747010, 3.70021117167718319732584525304, 4.41858659939594583211532429344, 5.53730142149248904993793084082, 6.25905327476354122980015967423, 7.34223425182523230787220981400, 8.473894102148616565102028162203, 9.186896069311863973039843929473, 9.987994068731365345071473404866