Properties

Label 2-693-1.1-c3-0-18
Degree $2$
Conductor $693$
Sign $1$
Analytic cond. $40.8883$
Root an. cond. $6.39439$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.18·2-s − 3.20·4-s − 7.60·5-s + 7·7-s − 24.5·8-s − 16.6·10-s − 11·11-s + 0.174·13-s + 15.3·14-s − 28.0·16-s − 128.·17-s + 141.·19-s + 24.4·20-s − 24.0·22-s + 133.·23-s − 67.1·25-s + 0.381·26-s − 22.4·28-s + 177.·29-s + 48.2·31-s + 134.·32-s − 282.·34-s − 53.2·35-s + 161.·37-s + 310.·38-s + 186.·40-s + 195.·41-s + ⋯
L(s)  = 1  + 0.773·2-s − 0.401·4-s − 0.680·5-s + 0.377·7-s − 1.08·8-s − 0.526·10-s − 0.301·11-s + 0.00371·13-s + 0.292·14-s − 0.438·16-s − 1.83·17-s + 1.71·19-s + 0.272·20-s − 0.233·22-s + 1.20·23-s − 0.537·25-s + 0.00287·26-s − 0.151·28-s + 1.13·29-s + 0.279·31-s + 0.745·32-s − 1.42·34-s − 0.257·35-s + 0.718·37-s + 1.32·38-s + 0.737·40-s + 0.745·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(40.8883\)
Root analytic conductor: \(6.39439\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 693,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.895703419\)
\(L(\frac12)\) \(\approx\) \(1.895703419\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 - 7T \)
11 \( 1 + 11T \)
good2 \( 1 - 2.18T + 8T^{2} \)
5 \( 1 + 7.60T + 125T^{2} \)
13 \( 1 - 0.174T + 2.19e3T^{2} \)
17 \( 1 + 128.T + 4.91e3T^{2} \)
19 \( 1 - 141.T + 6.85e3T^{2} \)
23 \( 1 - 133.T + 1.21e4T^{2} \)
29 \( 1 - 177.T + 2.43e4T^{2} \)
31 \( 1 - 48.2T + 2.97e4T^{2} \)
37 \( 1 - 161.T + 5.06e4T^{2} \)
41 \( 1 - 195.T + 6.89e4T^{2} \)
43 \( 1 + 488.T + 7.95e4T^{2} \)
47 \( 1 - 171.T + 1.03e5T^{2} \)
53 \( 1 - 431.T + 1.48e5T^{2} \)
59 \( 1 + 194.T + 2.05e5T^{2} \)
61 \( 1 - 585.T + 2.26e5T^{2} \)
67 \( 1 - 155.T + 3.00e5T^{2} \)
71 \( 1 - 374.T + 3.57e5T^{2} \)
73 \( 1 - 210.T + 3.89e5T^{2} \)
79 \( 1 + 7.00T + 4.93e5T^{2} \)
83 \( 1 - 93.6T + 5.71e5T^{2} \)
89 \( 1 - 307.T + 7.04e5T^{2} \)
97 \( 1 - 965.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.05533273953525574010816259034, −9.083977734661292411726894512078, −8.391614100162674214411415807073, −7.39825146645164854647279020770, −6.41434031380007236989548736861, −5.21455232076949395584825089619, −4.61856748588601953014376286832, −3.65767286324615624730066230898, −2.60010869480101745261437697292, −0.70483275033689325434338001405, 0.70483275033689325434338001405, 2.60010869480101745261437697292, 3.65767286324615624730066230898, 4.61856748588601953014376286832, 5.21455232076949395584825089619, 6.41434031380007236989548736861, 7.39825146645164854647279020770, 8.391614100162674214411415807073, 9.083977734661292411726894512078, 10.05533273953525574010816259034

Graph of the $Z$-function along the critical line