L(s) = 1 | + 2.18·2-s − 3.20·4-s − 7.60·5-s + 7·7-s − 24.5·8-s − 16.6·10-s − 11·11-s + 0.174·13-s + 15.3·14-s − 28.0·16-s − 128.·17-s + 141.·19-s + 24.4·20-s − 24.0·22-s + 133.·23-s − 67.1·25-s + 0.381·26-s − 22.4·28-s + 177.·29-s + 48.2·31-s + 134.·32-s − 282.·34-s − 53.2·35-s + 161.·37-s + 310.·38-s + 186.·40-s + 195.·41-s + ⋯ |
L(s) = 1 | + 0.773·2-s − 0.401·4-s − 0.680·5-s + 0.377·7-s − 1.08·8-s − 0.526·10-s − 0.301·11-s + 0.00371·13-s + 0.292·14-s − 0.438·16-s − 1.83·17-s + 1.71·19-s + 0.272·20-s − 0.233·22-s + 1.20·23-s − 0.537·25-s + 0.00287·26-s − 0.151·28-s + 1.13·29-s + 0.279·31-s + 0.745·32-s − 1.42·34-s − 0.257·35-s + 0.718·37-s + 1.32·38-s + 0.737·40-s + 0.745·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(693s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.895703419 |
L(21) |
≈ |
1.895703419 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1−7T |
| 11 | 1+11T |
good | 2 | 1−2.18T+8T2 |
| 5 | 1+7.60T+125T2 |
| 13 | 1−0.174T+2.19e3T2 |
| 17 | 1+128.T+4.91e3T2 |
| 19 | 1−141.T+6.85e3T2 |
| 23 | 1−133.T+1.21e4T2 |
| 29 | 1−177.T+2.43e4T2 |
| 31 | 1−48.2T+2.97e4T2 |
| 37 | 1−161.T+5.06e4T2 |
| 41 | 1−195.T+6.89e4T2 |
| 43 | 1+488.T+7.95e4T2 |
| 47 | 1−171.T+1.03e5T2 |
| 53 | 1−431.T+1.48e5T2 |
| 59 | 1+194.T+2.05e5T2 |
| 61 | 1−585.T+2.26e5T2 |
| 67 | 1−155.T+3.00e5T2 |
| 71 | 1−374.T+3.57e5T2 |
| 73 | 1−210.T+3.89e5T2 |
| 79 | 1+7.00T+4.93e5T2 |
| 83 | 1−93.6T+5.71e5T2 |
| 89 | 1−307.T+7.04e5T2 |
| 97 | 1−965.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.05533273953525574010816259034, −9.083977734661292411726894512078, −8.391614100162674214411415807073, −7.39825146645164854647279020770, −6.41434031380007236989548736861, −5.21455232076949395584825089619, −4.61856748588601953014376286832, −3.65767286324615624730066230898, −2.60010869480101745261437697292, −0.70483275033689325434338001405,
0.70483275033689325434338001405, 2.60010869480101745261437697292, 3.65767286324615624730066230898, 4.61856748588601953014376286832, 5.21455232076949395584825089619, 6.41434031380007236989548736861, 7.39825146645164854647279020770, 8.391614100162674214411415807073, 9.083977734661292411726894512078, 10.05533273953525574010816259034