Properties

Label 2-693-1.1-c3-0-17
Degree $2$
Conductor $693$
Sign $1$
Analytic cond. $40.8883$
Root an. cond. $6.39439$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.94·2-s − 4.22·4-s − 4.10·5-s + 7·7-s + 23.7·8-s + 7.96·10-s + 11·11-s + 71.7·13-s − 13.5·14-s − 12.3·16-s + 79.3·17-s − 159.·19-s + 17.3·20-s − 21.3·22-s − 137.·23-s − 108.·25-s − 139.·26-s − 29.5·28-s + 72.2·29-s + 235.·31-s − 166.·32-s − 154.·34-s − 28.7·35-s − 236.·37-s + 310.·38-s − 97.4·40-s − 147.·41-s + ⋯
L(s)  = 1  − 0.686·2-s − 0.528·4-s − 0.366·5-s + 0.377·7-s + 1.04·8-s + 0.251·10-s + 0.301·11-s + 1.53·13-s − 0.259·14-s − 0.192·16-s + 1.13·17-s − 1.93·19-s + 0.193·20-s − 0.207·22-s − 1.25·23-s − 0.865·25-s − 1.05·26-s − 0.199·28-s + 0.462·29-s + 1.36·31-s − 0.917·32-s − 0.777·34-s − 0.138·35-s − 1.05·37-s + 1.32·38-s − 0.385·40-s − 0.562·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(40.8883\)
Root analytic conductor: \(6.39439\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 693,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.102556349\)
\(L(\frac12)\) \(\approx\) \(1.102556349\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 - 7T \)
11 \( 1 - 11T \)
good2 \( 1 + 1.94T + 8T^{2} \)
5 \( 1 + 4.10T + 125T^{2} \)
13 \( 1 - 71.7T + 2.19e3T^{2} \)
17 \( 1 - 79.3T + 4.91e3T^{2} \)
19 \( 1 + 159.T + 6.85e3T^{2} \)
23 \( 1 + 137.T + 1.21e4T^{2} \)
29 \( 1 - 72.2T + 2.43e4T^{2} \)
31 \( 1 - 235.T + 2.97e4T^{2} \)
37 \( 1 + 236.T + 5.06e4T^{2} \)
41 \( 1 + 147.T + 6.89e4T^{2} \)
43 \( 1 + 147.T + 7.95e4T^{2} \)
47 \( 1 - 538.T + 1.03e5T^{2} \)
53 \( 1 - 571.T + 1.48e5T^{2} \)
59 \( 1 - 749.T + 2.05e5T^{2} \)
61 \( 1 + 758.T + 2.26e5T^{2} \)
67 \( 1 + 40.4T + 3.00e5T^{2} \)
71 \( 1 + 131.T + 3.57e5T^{2} \)
73 \( 1 - 238.T + 3.89e5T^{2} \)
79 \( 1 - 588.T + 4.93e5T^{2} \)
83 \( 1 - 481.T + 5.71e5T^{2} \)
89 \( 1 - 1.36e3T + 7.04e5T^{2} \)
97 \( 1 + 667.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.24095027104907296538447776596, −8.985807989265438122613708101813, −8.354130723611352440966111069775, −7.888930492273827740534429886831, −6.58909122142811947139107185380, −5.63165356491085443003866395235, −4.31472220197792158485871813866, −3.73029386484504597006288422349, −1.86405085266360553966922247707, −0.70130501464473982058510557113, 0.70130501464473982058510557113, 1.86405085266360553966922247707, 3.73029386484504597006288422349, 4.31472220197792158485871813866, 5.63165356491085443003866395235, 6.58909122142811947139107185380, 7.888930492273827740534429886831, 8.354130723611352440966111069775, 8.985807989265438122613708101813, 10.24095027104907296538447776596

Graph of the $Z$-function along the critical line