L(s) = 1 | − 1.94·2-s − 4.22·4-s − 4.10·5-s + 7·7-s + 23.7·8-s + 7.96·10-s + 11·11-s + 71.7·13-s − 13.5·14-s − 12.3·16-s + 79.3·17-s − 159.·19-s + 17.3·20-s − 21.3·22-s − 137.·23-s − 108.·25-s − 139.·26-s − 29.5·28-s + 72.2·29-s + 235.·31-s − 166.·32-s − 154.·34-s − 28.7·35-s − 236.·37-s + 310.·38-s − 97.4·40-s − 147.·41-s + ⋯ |
L(s) = 1 | − 0.686·2-s − 0.528·4-s − 0.366·5-s + 0.377·7-s + 1.04·8-s + 0.251·10-s + 0.301·11-s + 1.53·13-s − 0.259·14-s − 0.192·16-s + 1.13·17-s − 1.93·19-s + 0.193·20-s − 0.207·22-s − 1.25·23-s − 0.865·25-s − 1.05·26-s − 0.199·28-s + 0.462·29-s + 1.36·31-s − 0.917·32-s − 0.777·34-s − 0.138·35-s − 1.05·37-s + 1.32·38-s − 0.385·40-s − 0.562·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(693s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
1.102556349 |
L(21) |
≈ |
1.102556349 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1−7T |
| 11 | 1−11T |
good | 2 | 1+1.94T+8T2 |
| 5 | 1+4.10T+125T2 |
| 13 | 1−71.7T+2.19e3T2 |
| 17 | 1−79.3T+4.91e3T2 |
| 19 | 1+159.T+6.85e3T2 |
| 23 | 1+137.T+1.21e4T2 |
| 29 | 1−72.2T+2.43e4T2 |
| 31 | 1−235.T+2.97e4T2 |
| 37 | 1+236.T+5.06e4T2 |
| 41 | 1+147.T+6.89e4T2 |
| 43 | 1+147.T+7.95e4T2 |
| 47 | 1−538.T+1.03e5T2 |
| 53 | 1−571.T+1.48e5T2 |
| 59 | 1−749.T+2.05e5T2 |
| 61 | 1+758.T+2.26e5T2 |
| 67 | 1+40.4T+3.00e5T2 |
| 71 | 1+131.T+3.57e5T2 |
| 73 | 1−238.T+3.89e5T2 |
| 79 | 1−588.T+4.93e5T2 |
| 83 | 1−481.T+5.71e5T2 |
| 89 | 1−1.36e3T+7.04e5T2 |
| 97 | 1+667.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.24095027104907296538447776596, −8.985807989265438122613708101813, −8.354130723611352440966111069775, −7.888930492273827740534429886831, −6.58909122142811947139107185380, −5.63165356491085443003866395235, −4.31472220197792158485871813866, −3.73029386484504597006288422349, −1.86405085266360553966922247707, −0.70130501464473982058510557113,
0.70130501464473982058510557113, 1.86405085266360553966922247707, 3.73029386484504597006288422349, 4.31472220197792158485871813866, 5.63165356491085443003866395235, 6.58909122142811947139107185380, 7.888930492273827740534429886831, 8.354130723611352440966111069775, 8.985807989265438122613708101813, 10.24095027104907296538447776596