L(s) = 1 | − 4.54·2-s + 12.6·4-s − 6.53·5-s + 7·7-s − 21.0·8-s + 29.6·10-s − 11·11-s + 71.3·13-s − 31.8·14-s − 5.29·16-s − 2.45·17-s + 80.0·19-s − 82.6·20-s + 49.9·22-s − 61.8·23-s − 82.2·25-s − 324.·26-s + 88.5·28-s + 156.·29-s + 77.7·31-s + 192.·32-s + 11.1·34-s − 45.7·35-s + 84.7·37-s − 363.·38-s + 137.·40-s − 28.8·41-s + ⋯ |
L(s) = 1 | − 1.60·2-s + 1.58·4-s − 0.584·5-s + 0.377·7-s − 0.932·8-s + 0.939·10-s − 0.301·11-s + 1.52·13-s − 0.607·14-s − 0.0827·16-s − 0.0349·17-s + 0.966·19-s − 0.923·20-s + 0.484·22-s − 0.560·23-s − 0.658·25-s − 2.44·26-s + 0.597·28-s + 1.00·29-s + 0.450·31-s + 1.06·32-s + 0.0561·34-s − 0.220·35-s + 0.376·37-s − 1.55·38-s + 0.545·40-s − 0.109·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(693s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.8019263143 |
L(21) |
≈ |
0.8019263143 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1−7T |
| 11 | 1+11T |
good | 2 | 1+4.54T+8T2 |
| 5 | 1+6.53T+125T2 |
| 13 | 1−71.3T+2.19e3T2 |
| 17 | 1+2.45T+4.91e3T2 |
| 19 | 1−80.0T+6.85e3T2 |
| 23 | 1+61.8T+1.21e4T2 |
| 29 | 1−156.T+2.43e4T2 |
| 31 | 1−77.7T+2.97e4T2 |
| 37 | 1−84.7T+5.06e4T2 |
| 41 | 1+28.8T+6.89e4T2 |
| 43 | 1+352.T+7.95e4T2 |
| 47 | 1−256.T+1.03e5T2 |
| 53 | 1+492.T+1.48e5T2 |
| 59 | 1−3.12T+2.05e5T2 |
| 61 | 1+159.T+2.26e5T2 |
| 67 | 1+521.T+3.00e5T2 |
| 71 | 1−885.T+3.57e5T2 |
| 73 | 1+375.T+3.89e5T2 |
| 79 | 1+1.34e3T+4.93e5T2 |
| 83 | 1−1.37e3T+5.71e5T2 |
| 89 | 1−111.T+7.04e5T2 |
| 97 | 1−472.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.00245988880718076219434094945, −9.115583821861748867683411508412, −8.221461076506843792233610510284, −7.919897551605345169482123350504, −6.87619158569995011516680490295, −5.89344698451128017408896325060, −4.46713710308949712510447831323, −3.19799877119024357063671321045, −1.72084336848014269129520919586, −0.68478620519020112135929047380,
0.68478620519020112135929047380, 1.72084336848014269129520919586, 3.19799877119024357063671321045, 4.46713710308949712510447831323, 5.89344698451128017408896325060, 6.87619158569995011516680490295, 7.919897551605345169482123350504, 8.221461076506843792233610510284, 9.115583821861748867683411508412, 10.00245988880718076219434094945