Properties

Label 2-693-1.1-c3-0-14
Degree $2$
Conductor $693$
Sign $1$
Analytic cond. $40.8883$
Root an. cond. $6.39439$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.93·2-s + 16.3·4-s + 14.7·5-s − 7·7-s − 41.1·8-s − 72.8·10-s − 11·11-s − 32.3·13-s + 34.5·14-s + 72.4·16-s − 45.2·17-s − 146.·19-s + 241.·20-s + 54.2·22-s + 153.·23-s + 93.2·25-s + 159.·26-s − 114.·28-s + 78.6·29-s + 106.·31-s − 27.8·32-s + 223.·34-s − 103.·35-s + 94.0·37-s + 723.·38-s − 608.·40-s + 417.·41-s + ⋯
L(s)  = 1  − 1.74·2-s + 2.04·4-s + 1.32·5-s − 0.377·7-s − 1.81·8-s − 2.30·10-s − 0.301·11-s − 0.689·13-s + 0.659·14-s + 1.13·16-s − 0.645·17-s − 1.76·19-s + 2.69·20-s + 0.525·22-s + 1.38·23-s + 0.746·25-s + 1.20·26-s − 0.772·28-s + 0.503·29-s + 0.614·31-s − 0.153·32-s + 1.12·34-s − 0.499·35-s + 0.418·37-s + 3.08·38-s − 2.40·40-s + 1.58·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(40.8883\)
Root analytic conductor: \(6.39439\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 693,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.8765209411\)
\(L(\frac12)\) \(\approx\) \(0.8765209411\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + 7T \)
11 \( 1 + 11T \)
good2 \( 1 + 4.93T + 8T^{2} \)
5 \( 1 - 14.7T + 125T^{2} \)
13 \( 1 + 32.3T + 2.19e3T^{2} \)
17 \( 1 + 45.2T + 4.91e3T^{2} \)
19 \( 1 + 146.T + 6.85e3T^{2} \)
23 \( 1 - 153.T + 1.21e4T^{2} \)
29 \( 1 - 78.6T + 2.43e4T^{2} \)
31 \( 1 - 106.T + 2.97e4T^{2} \)
37 \( 1 - 94.0T + 5.06e4T^{2} \)
41 \( 1 - 417.T + 6.89e4T^{2} \)
43 \( 1 - 60.3T + 7.95e4T^{2} \)
47 \( 1 - 253.T + 1.03e5T^{2} \)
53 \( 1 + 647.T + 1.48e5T^{2} \)
59 \( 1 - 559.T + 2.05e5T^{2} \)
61 \( 1 + 602.T + 2.26e5T^{2} \)
67 \( 1 - 343.T + 3.00e5T^{2} \)
71 \( 1 + 224.T + 3.57e5T^{2} \)
73 \( 1 - 1.05e3T + 3.89e5T^{2} \)
79 \( 1 + 102.T + 4.93e5T^{2} \)
83 \( 1 - 730.T + 5.71e5T^{2} \)
89 \( 1 + 43.7T + 7.04e5T^{2} \)
97 \( 1 - 8.01T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.900629192511521821974283451247, −9.243017763076846509153279089879, −8.658423506224411195911725841008, −7.60866628890741955982625660137, −6.63443061736748684489987972802, −6.10344484070771777809950231673, −4.70889538151091165132304053734, −2.66799663689542625372205408401, −2.04751301985597671675548059527, −0.68353817373044458304890663313, 0.68353817373044458304890663313, 2.04751301985597671675548059527, 2.66799663689542625372205408401, 4.70889538151091165132304053734, 6.10344484070771777809950231673, 6.63443061736748684489987972802, 7.60866628890741955982625660137, 8.658423506224411195911725841008, 9.243017763076846509153279089879, 9.900629192511521821974283451247

Graph of the $Z$-function along the critical line