L(s) = 1 | − 4.93·2-s + 16.3·4-s + 14.7·5-s − 7·7-s − 41.1·8-s − 72.8·10-s − 11·11-s − 32.3·13-s + 34.5·14-s + 72.4·16-s − 45.2·17-s − 146.·19-s + 241.·20-s + 54.2·22-s + 153.·23-s + 93.2·25-s + 159.·26-s − 114.·28-s + 78.6·29-s + 106.·31-s − 27.8·32-s + 223.·34-s − 103.·35-s + 94.0·37-s + 723.·38-s − 608.·40-s + 417.·41-s + ⋯ |
L(s) = 1 | − 1.74·2-s + 2.04·4-s + 1.32·5-s − 0.377·7-s − 1.81·8-s − 2.30·10-s − 0.301·11-s − 0.689·13-s + 0.659·14-s + 1.13·16-s − 0.645·17-s − 1.76·19-s + 2.69·20-s + 0.525·22-s + 1.38·23-s + 0.746·25-s + 1.20·26-s − 0.772·28-s + 0.503·29-s + 0.614·31-s − 0.153·32-s + 1.12·34-s − 0.499·35-s + 0.418·37-s + 3.08·38-s − 2.40·40-s + 1.58·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(693s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.8765209411 |
L(21) |
≈ |
0.8765209411 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+7T |
| 11 | 1+11T |
good | 2 | 1+4.93T+8T2 |
| 5 | 1−14.7T+125T2 |
| 13 | 1+32.3T+2.19e3T2 |
| 17 | 1+45.2T+4.91e3T2 |
| 19 | 1+146.T+6.85e3T2 |
| 23 | 1−153.T+1.21e4T2 |
| 29 | 1−78.6T+2.43e4T2 |
| 31 | 1−106.T+2.97e4T2 |
| 37 | 1−94.0T+5.06e4T2 |
| 41 | 1−417.T+6.89e4T2 |
| 43 | 1−60.3T+7.95e4T2 |
| 47 | 1−253.T+1.03e5T2 |
| 53 | 1+647.T+1.48e5T2 |
| 59 | 1−559.T+2.05e5T2 |
| 61 | 1+602.T+2.26e5T2 |
| 67 | 1−343.T+3.00e5T2 |
| 71 | 1+224.T+3.57e5T2 |
| 73 | 1−1.05e3T+3.89e5T2 |
| 79 | 1+102.T+4.93e5T2 |
| 83 | 1−730.T+5.71e5T2 |
| 89 | 1+43.7T+7.04e5T2 |
| 97 | 1−8.01T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.900629192511521821974283451247, −9.243017763076846509153279089879, −8.658423506224411195911725841008, −7.60866628890741955982625660137, −6.63443061736748684489987972802, −6.10344484070771777809950231673, −4.70889538151091165132304053734, −2.66799663689542625372205408401, −2.04751301985597671675548059527, −0.68353817373044458304890663313,
0.68353817373044458304890663313, 2.04751301985597671675548059527, 2.66799663689542625372205408401, 4.70889538151091165132304053734, 6.10344484070771777809950231673, 6.63443061736748684489987972802, 7.60866628890741955982625660137, 8.658423506224411195911725841008, 9.243017763076846509153279089879, 9.900629192511521821974283451247