L(s) = 1 | − 4.60·2-s + 13.1·4-s − 1.84·5-s − 7·7-s − 23.9·8-s + 8.49·10-s + 11·11-s + 24.6·13-s + 32.2·14-s + 4.57·16-s − 17.8·17-s + 32.1·19-s − 24.3·20-s − 50.6·22-s − 14.1·23-s − 121.·25-s − 113.·26-s − 92.3·28-s + 41.5·29-s + 175.·31-s + 170.·32-s + 82.3·34-s + 12.9·35-s + 292.·37-s − 147.·38-s + 44.1·40-s − 154.·41-s + ⋯ |
L(s) = 1 | − 1.62·2-s + 1.64·4-s − 0.164·5-s − 0.377·7-s − 1.05·8-s + 0.268·10-s + 0.301·11-s + 0.525·13-s + 0.615·14-s + 0.0714·16-s − 0.255·17-s + 0.388·19-s − 0.272·20-s − 0.490·22-s − 0.128·23-s − 0.972·25-s − 0.855·26-s − 0.623·28-s + 0.266·29-s + 1.01·31-s + 0.940·32-s + 0.415·34-s + 0.0623·35-s + 1.30·37-s − 0.631·38-s + 0.174·40-s − 0.587·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(693s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.7034330046 |
L(21) |
≈ |
0.7034330046 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+7T |
| 11 | 1−11T |
good | 2 | 1+4.60T+8T2 |
| 5 | 1+1.84T+125T2 |
| 13 | 1−24.6T+2.19e3T2 |
| 17 | 1+17.8T+4.91e3T2 |
| 19 | 1−32.1T+6.85e3T2 |
| 23 | 1+14.1T+1.21e4T2 |
| 29 | 1−41.5T+2.43e4T2 |
| 31 | 1−175.T+2.97e4T2 |
| 37 | 1−292.T+5.06e4T2 |
| 41 | 1+154.T+6.89e4T2 |
| 43 | 1+277.T+7.95e4T2 |
| 47 | 1−52.1T+1.03e5T2 |
| 53 | 1+82.3T+1.48e5T2 |
| 59 | 1+712.T+2.05e5T2 |
| 61 | 1+647.T+2.26e5T2 |
| 67 | 1−260.T+3.00e5T2 |
| 71 | 1+369.T+3.57e5T2 |
| 73 | 1−1.14e3T+3.89e5T2 |
| 79 | 1−488.T+4.93e5T2 |
| 83 | 1+548.T+5.71e5T2 |
| 89 | 1+105.T+7.04e5T2 |
| 97 | 1+1.36e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.834714463944419357341935098598, −9.300483794889184260812285726285, −8.364852092972904968493954779573, −7.76486902083095688341135759376, −6.76168747437624095766254531347, −6.03114225855345079802739055946, −4.46762749682550905386064060362, −3.12106913975693130489990286922, −1.79913066484315486069267832466, −0.62416324217353957190919860818,
0.62416324217353957190919860818, 1.79913066484315486069267832466, 3.12106913975693130489990286922, 4.46762749682550905386064060362, 6.03114225855345079802739055946, 6.76168747437624095766254531347, 7.76486902083095688341135759376, 8.364852092972904968493954779573, 9.300483794889184260812285726285, 9.834714463944419357341935098598