L(s) = 1 | − 5.02·2-s + 17.2·4-s − 20.4·5-s − 7·7-s − 46.2·8-s + 102.·10-s + 11·11-s − 0.0115·13-s + 35.1·14-s + 94.7·16-s + 9.52·17-s − 93.4·19-s − 351.·20-s − 55.2·22-s − 99.9·23-s + 292.·25-s + 0.0580·26-s − 120.·28-s − 276.·29-s − 181.·31-s − 105.·32-s − 47.8·34-s + 143.·35-s − 404.·37-s + 469.·38-s + 946.·40-s + 27.8·41-s + ⋯ |
L(s) = 1 | − 1.77·2-s + 2.15·4-s − 1.82·5-s − 0.377·7-s − 2.04·8-s + 3.24·10-s + 0.301·11-s − 0.000246·13-s + 0.671·14-s + 1.47·16-s + 0.135·17-s − 1.12·19-s − 3.93·20-s − 0.535·22-s − 0.906·23-s + 2.34·25-s + 0.000437·26-s − 0.813·28-s − 1.76·29-s − 1.05·31-s − 0.581·32-s − 0.241·34-s + 0.690·35-s − 1.79·37-s + 2.00·38-s + 3.73·40-s + 0.105·41-s + ⋯ |
Λ(s)=(=(693s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(693s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.1136545527 |
L(21) |
≈ |
0.1136545527 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+7T |
| 11 | 1−11T |
good | 2 | 1+5.02T+8T2 |
| 5 | 1+20.4T+125T2 |
| 13 | 1+0.0115T+2.19e3T2 |
| 17 | 1−9.52T+4.91e3T2 |
| 19 | 1+93.4T+6.85e3T2 |
| 23 | 1+99.9T+1.21e4T2 |
| 29 | 1+276.T+2.43e4T2 |
| 31 | 1+181.T+2.97e4T2 |
| 37 | 1+404.T+5.06e4T2 |
| 41 | 1−27.8T+6.89e4T2 |
| 43 | 1−76.9T+7.95e4T2 |
| 47 | 1−136.T+1.03e5T2 |
| 53 | 1+170.T+1.48e5T2 |
| 59 | 1−585.T+2.05e5T2 |
| 61 | 1+530.T+2.26e5T2 |
| 67 | 1+354.T+3.00e5T2 |
| 71 | 1+1.11e3T+3.57e5T2 |
| 73 | 1+785.T+3.89e5T2 |
| 79 | 1+937.T+4.93e5T2 |
| 83 | 1+471.T+5.71e5T2 |
| 89 | 1+563.T+7.04e5T2 |
| 97 | 1−895.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.04426306200261277331651621119, −8.857511806299228346777237348319, −8.579255538198677495283379369288, −7.39116727870224552855130335791, −7.28848752239255272817711067074, −6.00394131974767877998440514487, −4.23839169270983097455629963554, −3.30401790577683581397018874534, −1.79039089111195507522466622202, −0.24614945773533279077487588749,
0.24614945773533279077487588749, 1.79039089111195507522466622202, 3.30401790577683581397018874534, 4.23839169270983097455629963554, 6.00394131974767877998440514487, 7.28848752239255272817711067074, 7.39116727870224552855130335791, 8.579255538198677495283379369288, 8.857511806299228346777237348319, 10.04426306200261277331651621119