Properties

Label 2-693-1.1-c1-0-2
Degree $2$
Conductor $693$
Sign $1$
Analytic cond. $5.53363$
Root an. cond. $2.35236$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 3·5-s + 7-s + 11-s − 4·13-s + 4·16-s + 6·17-s + 2·19-s + 6·20-s − 3·23-s + 4·25-s − 2·28-s + 6·29-s + 5·31-s − 3·35-s + 11·37-s − 6·41-s + 8·43-s − 2·44-s + 49-s + 8·52-s + 6·53-s − 3·55-s + 9·59-s − 10·61-s − 8·64-s + 12·65-s + ⋯
L(s)  = 1  − 4-s − 1.34·5-s + 0.377·7-s + 0.301·11-s − 1.10·13-s + 16-s + 1.45·17-s + 0.458·19-s + 1.34·20-s − 0.625·23-s + 4/5·25-s − 0.377·28-s + 1.11·29-s + 0.898·31-s − 0.507·35-s + 1.80·37-s − 0.937·41-s + 1.21·43-s − 0.301·44-s + 1/7·49-s + 1.10·52-s + 0.824·53-s − 0.404·55-s + 1.17·59-s − 1.28·61-s − 64-s + 1.48·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(5.53363\)
Root analytic conductor: \(2.35236\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 693,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8965723977\)
\(L(\frac12)\) \(\approx\) \(0.8965723977\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
7 \( 1 - T \)
11 \( 1 - T \)
good2 \( 1 + p T^{2} \) 1.2.a
5 \( 1 + 3 T + p T^{2} \) 1.5.d
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 5 T + p T^{2} \) 1.67.af
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.24457963817336821430305627863, −9.694504921717345364920145695912, −8.556667066253414749137472853294, −7.901671452709333870689471023015, −7.32024742481712425147757589138, −5.80492978659389909733109582978, −4.73710013360513636713787424546, −4.10975481209818427421549838760, −3.01251424255196705097668786615, −0.821355075233086309329735836862, 0.821355075233086309329735836862, 3.01251424255196705097668786615, 4.10975481209818427421549838760, 4.73710013360513636713787424546, 5.80492978659389909733109582978, 7.32024742481712425147757589138, 7.901671452709333870689471023015, 8.556667066253414749137472853294, 9.694504921717345364920145695912, 10.24457963817336821430305627863

Graph of the $Z$-function along the critical line