Properties

Label 2-693-1.1-c1-0-14
Degree $2$
Conductor $693$
Sign $-1$
Analytic cond. $5.53363$
Root an. cond. $2.35236$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.381·2-s − 1.85·4-s − 5-s + 7-s + 1.47·8-s + 0.381·10-s + 11-s + 0.236·13-s − 0.381·14-s + 3.14·16-s − 6.47·17-s + 3.47·19-s + 1.85·20-s − 0.381·22-s − 8.47·23-s − 4·25-s − 0.0901·26-s − 1.85·28-s − 1.76·29-s − 0.472·31-s − 4.14·32-s + 2.47·34-s − 35-s − 5.47·37-s − 1.32·38-s − 1.47·40-s − 4.47·41-s + ⋯
L(s)  = 1  − 0.270·2-s − 0.927·4-s − 0.447·5-s + 0.377·7-s + 0.520·8-s + 0.120·10-s + 0.301·11-s + 0.0654·13-s − 0.102·14-s + 0.786·16-s − 1.56·17-s + 0.796·19-s + 0.414·20-s − 0.0814·22-s − 1.76·23-s − 0.800·25-s − 0.0176·26-s − 0.350·28-s − 0.327·29-s − 0.0847·31-s − 0.732·32-s + 0.423·34-s − 0.169·35-s − 0.899·37-s − 0.215·38-s − 0.232·40-s − 0.698·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(5.53363\)
Root analytic conductor: \(2.35236\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 693,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 - T \)
11 \( 1 - T \)
good2 \( 1 + 0.381T + 2T^{2} \)
5 \( 1 + T + 5T^{2} \)
13 \( 1 - 0.236T + 13T^{2} \)
17 \( 1 + 6.47T + 17T^{2} \)
19 \( 1 - 3.47T + 19T^{2} \)
23 \( 1 + 8.47T + 23T^{2} \)
29 \( 1 + 1.76T + 29T^{2} \)
31 \( 1 + 0.472T + 31T^{2} \)
37 \( 1 + 5.47T + 37T^{2} \)
41 \( 1 + 4.47T + 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 - 0.236T + 47T^{2} \)
53 \( 1 + 5.52T + 53T^{2} \)
59 \( 1 + 15.1T + 59T^{2} \)
61 \( 1 - 8.47T + 61T^{2} \)
67 \( 1 - 9.18T + 67T^{2} \)
71 \( 1 - 4.47T + 71T^{2} \)
73 \( 1 + 9.76T + 73T^{2} \)
79 \( 1 - 4.47T + 79T^{2} \)
83 \( 1 - 11.4T + 83T^{2} \)
89 \( 1 - 10T + 89T^{2} \)
97 \( 1 + 8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.888912523750348806547038670875, −9.157918330307581212586057256194, −8.304824023050948723963500609033, −7.69796390449055974908492960853, −6.53100160719415771482904328931, −5.35447979095120156599135967404, −4.39158162458797089406994311472, −3.63104676949937777392394230778, −1.82200208131314142461308596676, 0, 1.82200208131314142461308596676, 3.63104676949937777392394230778, 4.39158162458797089406994311472, 5.35447979095120156599135967404, 6.53100160719415771482904328931, 7.69796390449055974908492960853, 8.304824023050948723963500609033, 9.157918330307581212586057256194, 9.888912523750348806547038670875

Graph of the $Z$-function along the critical line