Properties

Label 2-693-1.1-c1-0-11
Degree $2$
Conductor $693$
Sign $-1$
Analytic cond. $5.53363$
Root an. cond. $2.35236$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.61·2-s + 4.85·4-s − 5-s + 7-s − 7.47·8-s + 2.61·10-s + 11-s − 4.23·13-s − 2.61·14-s + 9.85·16-s + 2.47·17-s − 5.47·19-s − 4.85·20-s − 2.61·22-s + 0.472·23-s − 4·25-s + 11.0·26-s + 4.85·28-s − 6.23·29-s + 8.47·31-s − 10.8·32-s − 6.47·34-s − 35-s + 3.47·37-s + 14.3·38-s + 7.47·40-s + 4.47·41-s + ⋯
L(s)  = 1  − 1.85·2-s + 2.42·4-s − 0.447·5-s + 0.377·7-s − 2.64·8-s + 0.827·10-s + 0.301·11-s − 1.17·13-s − 0.699·14-s + 2.46·16-s + 0.599·17-s − 1.25·19-s − 1.08·20-s − 0.558·22-s + 0.0984·23-s − 0.800·25-s + 2.17·26-s + 0.917·28-s − 1.15·29-s + 1.52·31-s − 1.91·32-s − 1.10·34-s − 0.169·35-s + 0.570·37-s + 2.32·38-s + 1.18·40-s + 0.698·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(693\)    =    \(3^{2} \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(5.53363\)
Root analytic conductor: \(2.35236\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 693,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 - T \)
11 \( 1 - T \)
good2 \( 1 + 2.61T + 2T^{2} \)
5 \( 1 + T + 5T^{2} \)
13 \( 1 + 4.23T + 13T^{2} \)
17 \( 1 - 2.47T + 17T^{2} \)
19 \( 1 + 5.47T + 19T^{2} \)
23 \( 1 - 0.472T + 23T^{2} \)
29 \( 1 + 6.23T + 29T^{2} \)
31 \( 1 - 8.47T + 31T^{2} \)
37 \( 1 - 3.47T + 37T^{2} \)
41 \( 1 - 4.47T + 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 + 4.23T + 47T^{2} \)
53 \( 1 + 14.4T + 53T^{2} \)
59 \( 1 - 7.18T + 59T^{2} \)
61 \( 1 + 0.472T + 61T^{2} \)
67 \( 1 + 13.1T + 67T^{2} \)
71 \( 1 + 4.47T + 71T^{2} \)
73 \( 1 + 14.2T + 73T^{2} \)
79 \( 1 + 4.47T + 79T^{2} \)
83 \( 1 + 15.4T + 83T^{2} \)
89 \( 1 - 10T + 89T^{2} \)
97 \( 1 + 8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.897681906301842139364814588361, −9.226799517027414843947974217601, −8.232015821263850338909008446927, −7.75028346875846517427914776097, −6.91894735363637366813466419424, −5.93100162697745718557707219480, −4.41006224078158672130249449334, −2.80893412699786579355666273064, −1.63424282427585473803587229358, 0, 1.63424282427585473803587229358, 2.80893412699786579355666273064, 4.41006224078158672130249449334, 5.93100162697745718557707219480, 6.91894735363637366813466419424, 7.75028346875846517427914776097, 8.232015821263850338909008446927, 9.226799517027414843947974217601, 9.897681906301842139364814588361

Graph of the $Z$-function along the critical line