L(s) = 1 | + (−0.965 − 0.258i)2-s + (0.866 + 0.499i)4-s + (0.707 + 1.22i)5-s − i·7-s + (−0.707 − 0.707i)8-s + (−0.366 − 1.36i)10-s − 1.41i·11-s + (0.5 − 0.866i)13-s + (−0.258 + 0.965i)14-s + (0.500 + 0.866i)16-s + i·19-s + 1.41i·20-s + (−0.366 + 1.36i)22-s + (1.22 + 0.707i)23-s + (−0.499 + 0.866i)25-s + (−0.707 + 0.707i)26-s + ⋯ |
L(s) = 1 | + (−0.965 − 0.258i)2-s + (0.866 + 0.499i)4-s + (0.707 + 1.22i)5-s − i·7-s + (−0.707 − 0.707i)8-s + (−0.366 − 1.36i)10-s − 1.41i·11-s + (0.5 − 0.866i)13-s + (−0.258 + 0.965i)14-s + (0.500 + 0.866i)16-s + i·19-s + 1.41i·20-s + (−0.366 + 1.36i)22-s + (1.22 + 0.707i)23-s + (−0.499 + 0.866i)25-s + (−0.707 + 0.707i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 684 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.977 + 0.211i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 684 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.977 + 0.211i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7197354055\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7197354055\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.965 + 0.258i)T \) |
| 3 | \( 1 \) |
| 19 | \( 1 - iT \) |
good | 5 | \( 1 + (-0.707 - 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 7 | \( 1 + iT - T^{2} \) |
| 11 | \( 1 + 1.41iT - T^{2} \) |
| 13 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 - iT - T^{2} \) |
| 37 | \( 1 + T + T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.707 + 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.707 - 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.65104308463041318540122226755, −10.09200852045619827166981956165, −8.988136867121343144370165974481, −8.095347287561674444405468219115, −7.21849483497617811439403050819, −6.45535182258259207460200697164, −5.61642820980081696410362381333, −3.49667625021553192695735588764, −3.05214240173508699996308818481, −1.35869944940339697347770776127,
1.54956480626974630852139072464, 2.47272631276336195970847459109, 4.63582265453525652251748249787, 5.36869083695645184936560422916, 6.40437591139222227901002660165, 7.24610575281387056939640689881, 8.497680577964683920390266393698, 9.114883455978716337017069009793, 9.419828109934458901459713597143, 10.47085599431839238989110389440