L(s) = 1 | + 5-s − 7-s + 11-s + 17-s + 19-s − 2·23-s − 35-s − 43-s + 47-s + 55-s − 61-s − 73-s − 77-s − 2·83-s + 85-s + 95-s − 2·101-s − 2·115-s − 119-s + ⋯ |
L(s) = 1 | + 5-s − 7-s + 11-s + 17-s + 19-s − 2·23-s − 35-s − 43-s + 47-s + 55-s − 61-s − 73-s − 77-s − 2·83-s + 85-s + 95-s − 2·101-s − 2·115-s − 119-s + ⋯ |
Λ(s)=(=(684s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(684s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
684
= 22⋅32⋅19
|
Sign: |
1
|
Analytic conductor: |
0.341360 |
Root analytic conductor: |
0.584260 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ684(37,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 684, ( :0), 1)
|
Particular Values
L(21) |
≈ |
1.049806151 |
L(21) |
≈ |
1.049806151 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 19 | 1−T |
good | 5 | 1−T+T2 |
| 7 | 1+T+T2 |
| 11 | 1−T+T2 |
| 13 | (1−T)(1+T) |
| 17 | 1−T+T2 |
| 23 | (1+T)2 |
| 29 | (1−T)(1+T) |
| 31 | (1−T)(1+T) |
| 37 | (1−T)(1+T) |
| 41 | (1−T)(1+T) |
| 43 | 1+T+T2 |
| 47 | 1−T+T2 |
| 53 | (1−T)(1+T) |
| 59 | (1−T)(1+T) |
| 61 | 1+T+T2 |
| 67 | (1−T)(1+T) |
| 71 | (1−T)(1+T) |
| 73 | 1+T+T2 |
| 79 | (1−T)(1+T) |
| 83 | (1+T)2 |
| 89 | (1−T)(1+T) |
| 97 | (1−T)(1+T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.35491111494555031411626029725, −9.758818438700118784693109349550, −9.314387812062134939433397223502, −8.117394606784884318841001905600, −7.03087957755923141913663523242, −6.10749108764499485087312327875, −5.59033728809514506575945817746, −4.06732770039287226268176886749, −3.05201959040369072688091579245, −1.62495726525899861887525643650,
1.62495726525899861887525643650, 3.05201959040369072688091579245, 4.06732770039287226268176886749, 5.59033728809514506575945817746, 6.10749108764499485087312327875, 7.03087957755923141913663523242, 8.117394606784884318841001905600, 9.314387812062134939433397223502, 9.758818438700118784693109349550, 10.35491111494555031411626029725