L(s) = 1 | + 5-s − 7-s + 11-s + 17-s + 19-s − 2·23-s − 35-s − 43-s + 47-s + 55-s − 61-s − 73-s − 77-s − 2·83-s + 85-s + 95-s − 2·101-s − 2·115-s − 119-s + ⋯ |
L(s) = 1 | + 5-s − 7-s + 11-s + 17-s + 19-s − 2·23-s − 35-s − 43-s + 47-s + 55-s − 61-s − 73-s − 77-s − 2·83-s + 85-s + 95-s − 2·101-s − 2·115-s − 119-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 684 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 684 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.049806151\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.049806151\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 19 | \( 1 - T \) |
good | 5 | \( 1 - T + T^{2} \) |
| 7 | \( 1 + T + T^{2} \) |
| 11 | \( 1 - T + T^{2} \) |
| 13 | \( ( 1 - T )( 1 + T ) \) |
| 17 | \( 1 - T + T^{2} \) |
| 23 | \( ( 1 + T )^{2} \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( ( 1 - T )( 1 + T ) \) |
| 37 | \( ( 1 - T )( 1 + T ) \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( 1 + T + T^{2} \) |
| 47 | \( 1 - T + T^{2} \) |
| 53 | \( ( 1 - T )( 1 + T ) \) |
| 59 | \( ( 1 - T )( 1 + T ) \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( ( 1 - T )( 1 + T ) \) |
| 71 | \( ( 1 - T )( 1 + T ) \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( ( 1 - T )( 1 + T ) \) |
| 83 | \( ( 1 + T )^{2} \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.35491111494555031411626029725, −9.758818438700118784693109349550, −9.314387812062134939433397223502, −8.117394606784884318841001905600, −7.03087957755923141913663523242, −6.10749108764499485087312327875, −5.59033728809514506575945817746, −4.06732770039287226268176886749, −3.05201959040369072688091579245, −1.62495726525899861887525643650,
1.62495726525899861887525643650, 3.05201959040369072688091579245, 4.06732770039287226268176886749, 5.59033728809514506575945817746, 6.10749108764499485087312327875, 7.03087957755923141913663523242, 8.117394606784884318841001905600, 9.314387812062134939433397223502, 9.758818438700118784693109349550, 10.35491111494555031411626029725