L(s) = 1 | + (1 − i)3-s + (−2 + i)5-s + (1 + i)7-s + i·9-s + (−1 + i)11-s + 4i·13-s + (−1 + 3i)15-s + (−1 + 4i)17-s − 2i·19-s + 2·21-s + (1 + i)23-s + (3 − 4i)25-s + (4 + 4i)27-s + (−1 − i)29-s + (3 + 3i)31-s + ⋯ |
L(s) = 1 | + (0.577 − 0.577i)3-s + (−0.894 + 0.447i)5-s + (0.377 + 0.377i)7-s + 0.333i·9-s + (−0.301 + 0.301i)11-s + 1.10i·13-s + (−0.258 + 0.774i)15-s + (−0.242 + 0.970i)17-s − 0.458i·19-s + 0.436·21-s + (0.208 + 0.208i)23-s + (0.600 − 0.800i)25-s + (0.769 + 0.769i)27-s + (−0.185 − 0.185i)29-s + (0.538 + 0.538i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.429 - 0.902i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.429 - 0.902i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.17882 + 0.744458i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.17882 + 0.744458i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (2 - i)T \) |
| 17 | \( 1 + (1 - 4i)T \) |
good | 3 | \( 1 + (-1 + i)T - 3iT^{2} \) |
| 7 | \( 1 + (-1 - i)T + 7iT^{2} \) |
| 11 | \( 1 + (1 - i)T - 11iT^{2} \) |
| 13 | \( 1 - 4iT - 13T^{2} \) |
| 19 | \( 1 + 2iT - 19T^{2} \) |
| 23 | \( 1 + (-1 - i)T + 23iT^{2} \) |
| 29 | \( 1 + (1 + i)T + 29iT^{2} \) |
| 31 | \( 1 + (-3 - 3i)T + 31iT^{2} \) |
| 37 | \( 1 + (3 - 3i)T - 37iT^{2} \) |
| 41 | \( 1 + (-1 + i)T - 41iT^{2} \) |
| 43 | \( 1 - 4T + 43T^{2} \) |
| 47 | \( 1 - 10iT - 47T^{2} \) |
| 53 | \( 1 + 6T + 53T^{2} \) |
| 59 | \( 1 + 10iT - 59T^{2} \) |
| 61 | \( 1 + (-7 + 7i)T - 61iT^{2} \) |
| 67 | \( 1 - 2iT - 67T^{2} \) |
| 71 | \( 1 + (-11 - 11i)T + 71iT^{2} \) |
| 73 | \( 1 + (-7 + 7i)T - 73iT^{2} \) |
| 79 | \( 1 + (7 - 7i)T - 79iT^{2} \) |
| 83 | \( 1 + 12T + 83T^{2} \) |
| 89 | \( 1 + 10T + 89T^{2} \) |
| 97 | \( 1 + (-3 + 3i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.90293639950924490098586456093, −9.710257769013285326482755489778, −8.572716713322860688755140153680, −8.127728969111989550253974587762, −7.20249287127519761555542971558, −6.52618421855629833693962165931, −5.04785875325763693845647895300, −4.08472339728453209658730057154, −2.81770174621754923771682054846, −1.77547256946075574248562509860,
0.71163867883216330076621111548, 2.83708235795989507919471440725, 3.75710514967964179673241879041, 4.62355420241370326457132217229, 5.62018821535089568029128720803, 7.05287641382526658094968851070, 7.917533601561072958679530874492, 8.552239698677762881246582626022, 9.391389804813099017133643449434, 10.31838923921772139248433771046