Properties

Label 2-680-85.64-c1-0-7
Degree $2$
Conductor $680$
Sign $0.429 - 0.902i$
Analytic cond. $5.42982$
Root an. cond. $2.33019$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1 − i)3-s + (−2 + i)5-s + (1 + i)7-s + i·9-s + (−1 + i)11-s + 4i·13-s + (−1 + 3i)15-s + (−1 + 4i)17-s − 2i·19-s + 2·21-s + (1 + i)23-s + (3 − 4i)25-s + (4 + 4i)27-s + (−1 − i)29-s + (3 + 3i)31-s + ⋯
L(s)  = 1  + (0.577 − 0.577i)3-s + (−0.894 + 0.447i)5-s + (0.377 + 0.377i)7-s + 0.333i·9-s + (−0.301 + 0.301i)11-s + 1.10i·13-s + (−0.258 + 0.774i)15-s + (−0.242 + 0.970i)17-s − 0.458i·19-s + 0.436·21-s + (0.208 + 0.208i)23-s + (0.600 − 0.800i)25-s + (0.769 + 0.769i)27-s + (−0.185 − 0.185i)29-s + (0.538 + 0.538i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.429 - 0.902i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.429 - 0.902i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(680\)    =    \(2^{3} \cdot 5 \cdot 17\)
Sign: $0.429 - 0.902i$
Analytic conductor: \(5.42982\)
Root analytic conductor: \(2.33019\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{680} (489, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 680,\ (\ :1/2),\ 0.429 - 0.902i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.17882 + 0.744458i\)
\(L(\frac12)\) \(\approx\) \(1.17882 + 0.744458i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + (2 - i)T \)
17 \( 1 + (1 - 4i)T \)
good3 \( 1 + (-1 + i)T - 3iT^{2} \)
7 \( 1 + (-1 - i)T + 7iT^{2} \)
11 \( 1 + (1 - i)T - 11iT^{2} \)
13 \( 1 - 4iT - 13T^{2} \)
19 \( 1 + 2iT - 19T^{2} \)
23 \( 1 + (-1 - i)T + 23iT^{2} \)
29 \( 1 + (1 + i)T + 29iT^{2} \)
31 \( 1 + (-3 - 3i)T + 31iT^{2} \)
37 \( 1 + (3 - 3i)T - 37iT^{2} \)
41 \( 1 + (-1 + i)T - 41iT^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 - 10iT - 47T^{2} \)
53 \( 1 + 6T + 53T^{2} \)
59 \( 1 + 10iT - 59T^{2} \)
61 \( 1 + (-7 + 7i)T - 61iT^{2} \)
67 \( 1 - 2iT - 67T^{2} \)
71 \( 1 + (-11 - 11i)T + 71iT^{2} \)
73 \( 1 + (-7 + 7i)T - 73iT^{2} \)
79 \( 1 + (7 - 7i)T - 79iT^{2} \)
83 \( 1 + 12T + 83T^{2} \)
89 \( 1 + 10T + 89T^{2} \)
97 \( 1 + (-3 + 3i)T - 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.90293639950924490098586456093, −9.710257769013285326482755489778, −8.572716713322860688755140153680, −8.127728969111989550253974587762, −7.20249287127519761555542971558, −6.52618421855629833693962165931, −5.04785875325763693845647895300, −4.08472339728453209658730057154, −2.81770174621754923771682054846, −1.77547256946075574248562509860, 0.71163867883216330076621111548, 2.83708235795989507919471440725, 3.75710514967964179673241879041, 4.62355420241370326457132217229, 5.62018821535089568029128720803, 7.05287641382526658094968851070, 7.917533601561072958679530874492, 8.552239698677762881246582626022, 9.391389804813099017133643449434, 10.31838923921772139248433771046

Graph of the $Z$-function along the critical line